Research Paper

Neural representation of interaural correlation in human auditory brainstem: Comparisons between temporal-fine structure and envelope

Qian Wang a, b, Hao Lu a, Zhemeng Wu a, Liang Li a, c, d, * a School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100080, China
b Beijing Key Laboratory of Epilepsy, Epilepsy Center, Department of Functional Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
c Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, 100871, China
d Beijing Institute for Brain Disorders, Beijing, 100096, China

Abstract

Central processing of interaural correlation (IAC), which depends on the precise representation of acoustic signals from the two ears, is essential for both localization and recognition of auditory objects. A complex soundwave is initially filtered by the peripheral auditory system into multiple narrowband waves, which are further decomposed into two functionally distinctive components: the quickly-varying temporal-fine structure (TFS) and the slowly-varying envelope. In rats, a narrowband noise can evoke auditory-midbrain frequency-following responses (FFRs) that contain both the TFS component (FFRTFS) and the envelope component (FFREnv), which represent the TFS and envelope of the narrowband noise, respectively. These two components are different in sensitivity to the interaural time disparity. In human listeners, the present study investigated whether the FFRTFS and FFREnv components of brainstem FFRs to a narrowband noise are different in sensitivity to IAC and whether there are potential brainstem mechanisms underlying the integration of the two components. The results showed that although both the amplitude of FFRTFS and that of FFREnv were significantly affected by shifts of IAC between 1 and 0, the stimulus-to-response correlation for FFRTFS, but not that for FFREnv, was sensitive to the IAC shifts. Moreover, in addition to the correlation between the binaurally evoked FFRTFS and FFREnv, the correlation between the IAC-shift-induced change of FFRTFS and that of FFREnv was significant. Thus, the TFS information is more precisely represented in the human auditory brainstem than the envelope information, and the correlation between FFRTFS and FFREnv for the same narrowband noise suggest a brainstem binding mechanism underlying the perceptual integration of the TFS and envelope signals.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

It is astonishing to know how the brain is able to selectively track target-sound streams when multiple sounds are heard (the “cocktail party problem”, Cherry, 1953). To achieve a successful sound selection, localization and recognition, a critical central process is to compute the similarity of acoustic signals at the two ears (i.e., the interaural correlation (IAC), Jeffress and Robinson, 1962). The processing of IAC also plays a role in both sound localization (Coffey et al., 2006; Franken et al., 2014; Soeta and Nakagawa, 2006) and target-object detection/recognition in noisy environments (Durlach et al., 1986; Palmer et al., 1999).

To achieve the processing of IAC, the auditory system must precisely represent dynamic sound signals. For example, depending on the bandwidth, fluctuations of both interaural phase and interaural level of narrowband noises are the important cues for processing IAC (including the detection of interaural incoherence, Goupell and Hartmann, 2006, 2007a,b). In the peripheral auditory system, a complex sound is initially filtered into multiple narrowband waves, and then each narrowband wave is decomposed into both quickly-varying temporal fine structures (TFSSs) and slowly-varying envelopes (Moore, 2008; Rosen, 1992). Therefore, steady-state narrowband noises are naturally useful for examining the
central representations of TFS and envelope signals. Whether the TFS and envelope components are functionally different remains debated (Apoux et al., 2013; Hopkins et al., 2008; Hopkins and Moore, 2009, 2010; Lorenzi et al., 2006; Shamma and Lorenzi, 2013; Smith et al., 2002; Swaminathan et al., 2016; Zeng et al., 2004). Also, some studies have emphasized the mutual facilitation between TFS and envelope (Moon et al., 2014; Swaminathan and Heinz, 2012). If binaural processing is critical for sound localization/recognition and the TFS is functionally different from the envelope, it is of interest to know whether the neural representation of TFS signals and that of envelope signals are different in the sensitivity to IAC.

Theoretically, a steady-state Gaussian narrowband noise with a center frequency of c Hz and a bandwidth of b Hz has not only the TFS energy around c Hz, but also the envelope energy within the frequency range between 0 and b Hz (Longtin et al., 2008). Thus, steady-state narrowband noises are very useful for extracting the TFS and envelope components when the IAC value is modulated artificially.

Scalp-recorded frequency-following responses (FFRs) are sustained neuro-electrical potentials representing the periodicity of acoustic stimuli (Worden and Marsh, 1968) with the origin site in the auditory midbrain, including the inferior colliculus (IC; Bidelmann, 2015; Chandrasekaran and Kraus, 2010; Du et al., 2009; Luo et al., 2017; Marsh et al., 1974; Ping et al., 2008; Smith et al., 1975; Sömler et al., 1977; Wang and Li, 2015, 2017, 2018; Weinberger et al., 1970). FFRs can encode both the sound TFS (e.g., Chandrasekaran and Kraus, 2010; Du et al., 2011; Galbraith, 1994; Krishnan, 2002; Krishnan and Gandour, 2009; Luo et al., 2017; Russo et al., 2004; Wang and Li, 2015, 2017, 2018) and envelope components (also called envelope-following response) (e.g., Aiken and Picton, 2006, 2008; Dolphin and Mountain, 1992, 1993; Hall, 1979; Luo et al., 2017; Shinn-Cunningham et al., 2013; Supin and Popov, 1995; Wang and Li, 2015, 2017; Zhu et al., 2013).

Some studies have suggested that these two components are different in response patterns (Luo et al., 2017; Shinn-Cunningham et al., 2017; Wang and Li, 2015, 2017, 2018). Particularly, in rats, narrowband-noise-evoked IC FFRs contain both the TFS component (FFR_{TFS}) and the envelope component (FFR_{Env}), representing the TFS and envelope of the narrowband noise, respectively (Luo et al., 2017; Wang and Li, 2015, 2017, 2018). FFR_{TFS} and FFR_{Env} are different in the sensitivity to IAC. It is important to investigate whether the brainstem FFR_{TFS} and FFR_{Env} are different in the sensitivity to IAC, because this line of research can improve our understanding of how the spatial and non-spatial features of an auditory object are represented in the auditory brainstem, especially under noisy listening conditions.

More importantly, according to the “Binding Theory” (Treisman and Gelade, 1980), the formation of a unified perceptual object depends on certain linking mechanisms for integrating various physiologically decomposed features. Thus, there must be certain central mechanisms underlying the binding of central representation of TFSs and that of envelopes to form a unified sound percept. However, this “binding problem” has not been solved: How are FFR_{TFS} and FFR_{Env} bound to induce perceptual integration of TFS and envelope features?

In this study, binaurally evoked FFRs to narrowband noises were recorded from normal-hearing human participants under either the diotic (IAC = 1) or the dichotic (IAC = 0) condition. The two main issues of this study include: (1) whether FFR_{TFS} and FFR_{Env} are different in the sensitivity to IAC; (2) whether FFR_{TFS} and FFR_{Env} are correlated with a source specificity.

2. Materials and methods

2.1. Participants

Twenty-five university students (12 females and 13 males; mean age = 20.7 years, SD = 2.4 years) participated in the study. The all had symmetrical hearing (no more than 15-dB difference between the two ears) and normal pure-tone hearing thresholds (no more than 25 dB HL at each ear) between 0.125 and 8 kHz (ANSI-S3.6, 2004). All the participants provided informed consent and received stipends for their participation. The experimental procedures were approved by the Committee for Protecting Human and Animal Subjects in the School of Psychological and Cognitive Sciences, Peking University.

2.2. Acoustic stimuli

Two uncorrelated (independent) Gaussian white noises with the duration of 200 ms (including the 5-ms rise/fall periods) were generated with MATLAB (Math Works Inc., Natick, Massachusetts, USA) at the sampling rate of 20 kHz with 16-bit amplitude quantization. The noises were then filtered with a 512-point band-pass FIR filters to obtain two uncorrelated narrowband noises (sound A and sound B) with the center frequency of 500 Hz and the bandwidth of 1/3 octaves (Fig. 1B). After the filtering, the actual correlation coefficient between the two uncorrelated narrowband noises was −0.041, and both the correlation coefficient for the TFS component and that for the envelope component were less than 0.1. In this study, only the single polarity was used. The TFS and envelope signals were separated by band-pass filters during data analyses.

The noise signals were transferred using a Creative Sound Blaster (Creative SB X-Fi Surround 5.1 Pro, Creative Technology Ltd, Singapore) and amplified with an AKG K872 (AKG Acoustics GmbH, Vienna, Austria) with a gain of 20 dB. This configuration was used to establish the IAC. The electrical signals were amplified with a SR-830 (Stanford Research Systems, Sunnyvale, CA, USA) with a sensitivity of 200 mV/mV and a noise level of 5 mV (peak). The electrical signals were transmitted to a Creative Audio All-in-One Pro USB (Creative Labs, Singapore) with a gain of 20 dB and a noise level of 5 mV (peak). The electrical signals were amplified with a SR-830 (Stanford Research Systems, Sunnyvale, CA, USA) with a sensitivity of 200 mV/mV and a noise level of 5 mV (peak). The electrical signals were transferred to a Creative Sound Blaster (Creative SB X-Fi Surround 5.1 Pro, Creative Technology Ltd, Singapore) and amplified with an AKG K872 (AKG Acoustics GmbH, Vienna, Austria) with a gain of 20 dB. The electrical signals were transferred to a Creative Sound Blaster (Creative SB X-Fi Surround 5.1 Pro, Creative Technology Ltd, Singapore) and amplified with an AKG K872 (AKG Acoustics GmbH, Vienna, Austria) with a gain of 20 dB. The electrical signals were transferred to a Creative Sound Blaster (Creative SB X-Fi Surround 5.1 Pro, Creative Technology Ltd, Singapore) and amplified with an AKG K872 (AKG Acoustics GmbH, Vienna, Austria) with a gain of 20 dB. The electrical signals were transferred to a Creative Sound Blaster (Creative SB X-Fi Surround 5.1 Pro, Creative Technology Ltd, Singapore) and amplified with an AKG K872 (AKG Acoustics GmbH, Vienna, Austria) with a gain of 20 dB. The electrical signals were transferred to a Creative Sound Blaster (Creative SB X-Fi Surround 5.1 Pro, Creative Technology Ltd, Singapore) and amplified with an AKG K872 (AKG Acoustics GmbH, Vienna, Austria) with a gain of 20 dB. The electrical signals were transferred to a Creative Sound Blaster (Creative SB X-Fi Surround 5.1 Pro, Creative Technology Ltd, Singapore) and amplified with an AKG K872 (AKG Acoustics GmbH, Vienna, Austria) with a gain of 20 dB.
Singapore) and presented to participants with insert earphones (ER-3, Etymotic Research, Elk Grove Village, IL) at the intensity of 75 dB SPL. All noises were calibrated using a Larson Davis Audiometer Calibration and Electroacoustic Testing System (AUDitTM and System 824, Larson Davis, USA).

2.3. FFR recordings

FFRs can be recorded under passive listening conditions (Skoe and Kraus, 2010). In this study, participants were instructed to watch a quiet movie of their choice during the recording sessions when they listened to acoustic stimuli in a sound attenuated chamber (EMI Shielded Audiomteric Examination Acoustic Suite). Acoustically evoked potentials were recorded using a NeuroScan SynAmp system (Compumedics Limited, Victoria, Australia). Recorded neural responses were digitized at the rate of 20 kHz and collected with a 30–3000 Hz online bandpass filter. The active electrode was placed at the vertex (Cz), with reference at left mastoid. The ground electrode was placed on the forehead between Fp1 and Fp2 (Fig. 1A).

In total 4000 sweeps were presented in two blocks, one for the condition with the IAC of 1 and the other for the condition with the IAC of 0. The presentation order of the two blocks was balanced across participants.

2.4. Data analyses

The response waveforms were off-line segmented into epochs from −50 to 250 ms after the noise-stimulus onset and then baseline-corrected against the pre-stimulus level (−50 to 0 ms). Epochs exceeding ±50 μV were rejected as artifacts, and the remaining ones were averaged. Both the FFR_{TFS} and FFR_{Env} were extracted from original response potentials using 512-order low-pass (below 200 Hz) and band-pass (400–600 Hz) FIR filters (designed in MATLAB using the fir2 function), respectively. Then the FFR_{TFS} and FFR_{Env} components were processed by long-term fast Fourier transform (FFT) to calculate the spectral amplitude Amp_f as a function of frequency f. The response latency under each condition was defined as the time of the first primary peak after the sound onset (e.g., the first positive peak shown in Fig. 3 panel A), and automatically determined by the max function in Matlab within a time window from 0 to 20 msec.

As mentioned in the Introduction, a steady-state narrowband noise with a center frequency of c Hz and a bandwidth of b Hz has the TFS energy around c Hz and the envelope energy within the frequency range between 0 and b Hz (Longtin et al., 2008). Thus, for a narrowband noise with bandwidth b, the TFS energy distributes from the low-cut (f_L) to the high-cut (f_H) frequencies, and the envelope energy emerges below the frequency b. The normalized amplitude of FFR_{TFS} can be calculated by the following function (see also in Wang and Li, 2015):

$$ FFR_{TFS_normalized_amplitude} = \frac{\sum_{f_L}^{f_H} Amp_f}{\sum_{n=-2}^{5000} Amp_n} \tag{1} $$

The normalized amplitude of FFR_{Env} can be calculated by the following function:

$$ FFR_{Env_normalized_amplitude} = \frac{\sum_{l=2}^{b} Amp_f}{\sum_{n=-2}^{5000} Amp_n} \tag{2} $$

where the denominator represents the level of noise floor ranging from 2 to 5000 Hz while the numerator represents the spectral region of interest.

To determine the neural fidelity of acoustic inputs, the stimulus-to-response (S–R) correlation was estimated by a cross-correlation function (CCF). Both the acoustic TFS component and the envelope component of the narrowband stimulus were extracted by the Hilbert transform (Hilbert, 1912). On the other hand, the FFR_{TFS} and FFR_{Env} components were also separated by band-pass and low-pass filters described above. The value with the optimal delay (which was associated with the maximum S–R correlation) was used to access the S–R correlation coefficient (flow-process diagram see in Fig. 2).

To analyze the correlation between the IAC-sensitive TFS components and the IAC-sensitive envelope components for human scalp FFRs, both ΔFFR_{TFS} and ΔFFR_{Env} were examined. Generally, ΔFFR was defined as the relative difference between the relative amplitude of FFR when the IAC was 1 and that when the IAC was 0, as shown by function (3):

$$ \Delta FFR = (FFR_{IAC = 1} - FFR_{IAC = 0})/ FFR_{IAC = 1} \tag{3} $$

Statistical analyses were performed with IBM SPSS Statistics 20 (SPSS Inc., Chicago, Illinois 60606). Within-subjects, repeated-measures analyses of variance (ANOVAs), t-tests, Pearson correlation, and Bonferroni post-hoc tests were conducted to assess differences between two stimulation conditions. The null-hypothesis rejection level was set at 0.05.

3. Results

3.1. Transient subcortical responses and interaural correlation

The results of this study showed that the steady-state narrowband noise efficiently evoked human scalp-recorded field potentials (Fig. 3A). By measuring the latency and amplitude of the sound-evoked first-peak potential for individual participants, the results showed that for the first-peak latency, no significant differences were found between the interaurally correlated condition (i.e., the diotic condition, IAC = 1) (mean = 9.02 msec, SD = 0.62 msec) and the interaurally uncorrelated condition (i.e., the dichotic condition, IAC = 0) (mean = 9.11 msec, SD = 0.52 msec) (paired t-test, t_{24} = 1.256, p = 0.221). For the first peak amplitude, no significant difference was found between the interaurally correlated condition (mean = 0.62 μV, SD = 0.19 μV) and the interaurally uncorrelated condition (mean = 0.61 μV, SD = 0.15 μV) (paired t-test, t_{24} = 0.110, p = 0.913). These results indicate that the early transient auditory-brainstem response was not sensitive to IAC.

3.2. Sensitivity of FFR_{TFS} and FFR_{Env} to interaural correlation

Fourier transform analyses of noise-evoked human scalp-recorded FFRs (Fig. 3A) clearly showed that the narrowband-noise-evoked FFRs contained both a TFS component (FFR_{TFS}) and an envelope component (FFR_{Env}). For these two components, their normalized amplitudes were calculated as a signal-to-noise ratio value (see details in the Methods). Both the FFR_{TFS} amplitude (t_{24} = 2.186, p = 0.039) and the FFR_{Env} amplitude (t_{24} = 3.079, p = 0.005) were significantly larger under the interaurally correlated condition (IAC = 1) than those under the interaurally uncorrelated condition (IAC = 0, Fig. 3B), suggesting that both the brainstem representation of the TFS component and that of the envelope component of the noise stimulus are sensitive to IAC.
3.3. Sensitivity of stimulus-to-response (S-R) correlation for FFR_{TFS} and FFR_{Env} to interaural correlation

To further examine how faithfully the FFR_{TFS} and FFR_{Env} could represent the two acoustic features (TFS and envelope) of the narrowband-noise stimulus, the stimulus-to-response (S-R) correlation (between the reference noise (e.g., noise A) and FFRs) was calculated using the cross-correlation function (Fig. 2). As the examples showed in Fig. 4A, Pearson correlation tests showed that the S-R correlation between the acoustic TFS and the (neural) FFR_{TFS} was significant (all \(p < 0.01 \)); the S-R correlation between the acoustic envelope and the (neural) FFR_{Env} was also significant (all \(p < 0.01 \)).

Moreover, to test whether the S-R correlation was vulnerable to IAC, as shown in Fig. 4B, the S-R correlation for FFR_{TFS} to binaurally presented sound A under the interaurally correlated condition \((\text{IAC} = 1, \text{sound A presented at each ear})\) was compared with that under the interaurally uncorrelated condition \((\text{IAC} = 0, \text{sound A presented to one ear and sound B presented to the other ear})\). A two-way ANOVA showed that the main effect of reference stimulus on the S-R correlations for FFR_{TFS} was significant \((F_{1,24} = 27.443, p < 0.001)\), the main effect of stimulated condition was not significant \((F_{1,24} = 0.003, p = 0.958)\), and the interaction effect was significant \((F_{1,24} = 18.438, p < 0.001)\). The results of post hoc tests (corrected with Bonferroni adjustment) showed that when the reference stimulus was sound A, the S-R correlation for FFR_{TFS} to sound A (but not that to sound B) under the interaurally correlated condition (sound A presented to both ears) was significantly larger than that under the interaurally uncorrelated condition (sound A presented to one ear and sound B presented to the other ear) \((p < 0.001)\), indicating that introducing an interfering sound (i.e., sound B in the binaural stimulation condition) affected the neural fidelity of FFR_{TFS} to the reference sound A.

In addition, when the reference stimulus was also sound A for the correlation calculation, the S-R correlation for FFR_{TFS} to (binaural) sound A was significantly larger than that to (binaural) sound B under the interaurally correlated condition \((p < 0.001)\), indicating that the FFR_{TFS} entrainment of sound A was stimulus-specific. Interestingly, also with the reference stimulus being sound A, the S-R correlation for FFR_{TFS} to sound B under the interaurally correlated condition (sound B presented to the two ears) was significantly smaller than S-R correlation for FFR_{TFS} under the interaurally uncorrelated condition \((p = 0.002, \text{sound A presented to one ear and sound B presented to the other ear})\), confirming that the FFR_{TFS} representation of sound B was also stimulus-specific even under noisy environments (interfered by sound A). Also, under the interaurally uncorrelated condition, no significant difference was found between the S-R correlation for FFR_{TFS} when the reference stimulus was sound A and that when the reference stimulus was sound B \((p = 0.104)\).

The same tests were conducted for the S-R correlations for FFR_{Env}, but no significant results were obtained (all \(p > 0.05 \)) (Fig. 4B), suggesting that the FFR_{TFS}, but not FFR_{Env} could specifically represent the acoustic information in the human auditory brainstem even under listening conditions with interfering sources.
To estimate whether the correlation between TFS and envelope signals are source dependent (i.e., the potentially source-specific temporal binding in the auditory brainstem), Pearson correlation tests were conducted between the normalized amplitude of FFR\textsubscript{TFS} and that of FFR\textsubscript{Env}. The results showed that the correlation was significant under the interaurally correlated stimulation condition \((r_{24} = 0.480, p = 0.015)\) but marginally significant under the interaurally uncorrelated stimulation condition \((r_{24} = 0.392, p = 0.052)\), suggesting that there existed a feature binding of the TFS and envelope components in the brainstem (Fig. 5).

Moreover, Pearson correlation tests between \(\Delta FFRTFS\) and \(\Delta FFREnv\), which represented the IAC-sensitive TFS component and the IAC-sensitive envelope component \((\Delta FFR)\) was defined as the relative difference between the relative amplitude of FFR when the IAC was 1 and that when the IAC was 0, see the Methods). The results showed a significant correlation between \(\Delta FFRTFS\) and \(\Delta FFREnv\) \((r_{24} = 0.727, p < 0.001)\) (Fig. 6), further implying a potential functional binding between FFR\textsubscript{TFS} and FFR\textsubscript{Env} at the brainstem level.

Moreover, the correlation between FFR\textsubscript{TFS} under the interaurally correlated condition (“sound A + sound A'”) and FFR\textsubscript{Env} under the interaurally uncorrelated condition (“sound A + sound B'”) was also not significant \((r_{24} = 0.157, p = 0.453)\); the correlation between FFR\textsubscript{TFS} under the interaurally uncorrelated condition (“sound A + sound B'”) and FFR\textsubscript{Env} under the interaurally correlated condition (“sound A + sound A'”) was also not significant \((r_{24} = 0.332, p = 0.105)\).

4. Discussion

As mentioned in the Introduction, in the peripheral auditory system a broadband soundwave is bandpass-filtered into a series of narrowband waves, and then each narrowband wave is further decomposed into the quickly varying TFS component and the slowly varying envelope component (Moore, 2014; Rosen, 1992). It has been debated whether these two components contribute to different perceptual performances (Apoux et al., 2013; Hopkins et al., 2008; Hopkins and Moore, 2009, 2010; Lorenzi et al., 2006; Shamma and Lorenzi, 2013; Smith et al., 2002; Swaminathan et al., 2016; Zeng et al., 2004).

Encoding of sounds in the auditory system with high fidelity is critical for survival (Dallos et al., 1996; Yost and Sheft, 1993). The neural strategies for precisely representing acoustic features of stimuli may depend on the hierarchically functional organization of the auditory system (for reviews see Nelken and Bar-Yosef, 2008; Shamma et al., 2011). Recently, it has been confirmed that both the TFS component and the envelope component of a narrowband noise can be represented in brainstem FFRs (Luo et al., 2017; Wang and Li, 2015, 2017, 2018), showing that narrowband noises are particularly useful in this line of research.

Although a narrowband noise is aperiodic, it contains both TFS and envelope acoustic components (Longtin et al., 2008), and particularly, can evoke both the TFS and envelope components of FFRs recorded in the IC (Luo et al., 2017; Wang and Li, 2015, 2017, 2018). More importantly, the usage of narrowband noises allows manipulations of the similarity (correlation) between acoustic stimuli presented at the two ears (Goupell and Hartmann, 2006, 2007a.b; Jeffress and Robinson, 1962), thereby being particularly useful in the investigation of the IAC processing in the auditory system.

4.1. Sensitivity to the IAC

Using scalp-recorded onset responses and FFRs to either diotic (IAC = 1) or dichotic (IAC = 0) narrowband noises, this study examined in humans whether the onset, TFS, and envelope components of the stimulus can be precisely represented by onset responses, FFR\textsubscript{TFS}, and FFR\textsubscript{Env} respectively, because the sensitivity of these ERP components to IAC depends on how precisely these acoustic components are represented in the human auditory brainstem.

Previous studies have shown that click-evoked auditory
brainstem responses were sensitive to interaural time difference (Fowler, 2004; Wrege and Starr, 1981). The results of this study showed that neither the latency nor the amplitude of the onset response to the noise stimulus was affected by the IAC, indicating that without a sufficient temporal buildup of interaural processing, the early transient (onset) auditory-brainstem response was not sensitive to IAC. On the other hand, however, both FFRTFS and FFREnv were significantly sensitive to IAC, suggesting that both the TFS signal and the envelope signal of the narrowband-noise stimulus are represented by FFRs in the auditory brainstem. However, the results of this study further showed that the accuracy of the FFRTFS in representing acoustic features is much better than that of the FFREnv (see below).

In this study, to further examine how faithfully the TFS and envelope components of the noise stimulus can be represented by the FFRTFS and FFREnv, respectively, the S-R correlation was calculated using the cross-correlation function. The results showed that the S-R correlation between the acoustic TFS and the (neural) FFRTFS was significant, and the S-R correlation between the acoustic envelope and the (neural) FFREnv was also significant (all $p < 0.01$). Moreover, the S-R correlation between the acoustic TFS of a reference noise (e.g., noise A) and the binaurally induced FFRTFS was significantly larger when the reference noise was presented at each ear (under the diotic stimulation condition, IAC = 1) than when the reference noise was presented at one ear and an independent noise (e.g., noise B) was presented at the other ear (under the dichotic stimulation condition, IAC = 0). Thus, the S-R correlation for FFRTFS is sensitive to the IAC. Surprisingly, this sensitivity of S-R correlation to IAC does not occur for FFREnv.

As mentioned in the Introduction, whether the TFS and envelope components contribute to different perceptual performances has been a long-term debate (Apoux et al., 2013; Hopkins et al., 2008; Hopkins and Moore, 2009, 2010; Lorenzi et al., 2006; Shamma and Lorenzi, 2013; Smith et al., 2002; Swaminathan et al., 2016; Zeng et al., 2004). The results of this study showed that the S-R correlation for FFRTFS, but not that for FFREnv, was sensitive to IAC.
confirming that the accuracy of the FFR\textsubscript{TFS} in representing acoustic features is much higher than that of the FFR\textsubscript{Env}, thereby supporting the functional dichotomy between FFR\textsubscript{TFS} and FFR\textsubscript{Env} (also see Luo et al., 2017; Wang and Li, 2015, 2017, 2018). Compared to those of envelope signals, the neural representations of TFS signals may play a more important role in the perceptual segregation of concurrent sound sources, because the FFR\textsubscript{TFS} benefits more from binaural cues.

4.2. Correlations between FFR\textsubscript{TFS} and FFR\textsubscript{Env}

Theoretically, any perceptual systems must intrinsically organize physical features of the outside world into integrated perceptual objects (Griffiths and Warren, 2004; Treisman and Gelade, 1980). However, this binding mechanism is largely unknown. According to the “Binding Theory” (Treisman and Gelade, 1980; Spence, 2011; Burwick, 2014), the formation of a unified perceptual object depends on certain linking mechanisms for integrating various physiologically decomposed features (such as higher spatial-frequency textures and lower spatial-frequency contours of a single visual image). Although there has been a long-stand debate as to whether TFS and envelope are separately associated with different perceptual functions (e.g., Apoux et al., 2013; Rosen, 1992; Seeber and Hafter, 2011; Smith et al., 2002; Srinivasan and Zahorik, 2014; Swaminathan and Heinz, 2012; Xu and Pfingst, 2003; Zeng et al., 2004), it is clear that listeners do not perceive the TFS and envelope components separately, and various auditory/speech perceptions must be based on the combined processing of TFS and envelope signals (Gnansia et al., 2009; Huang et al., 2011; Hopkins and Moore, 2009; Moon et al., 2014). Thus, there must be certain mechanisms underlying the integration between the TFSs and envelopes that belong to a certain sound source, leading to that listeners only perceive unified auditory objects. Indeed, it has been reported that the integration processing of TFS and envelope signals is essential to various auditory/speech perceptions (e.g., Gnansia et al., 2009; Huang et al., 2011; Hopkins and Moore, 2009; Moon et al., 2014; Schimmel et al., 2008). Recent psychoacoustic studies have also emphasized a mutual facilitation when TFS and envelope are highly coherent (Swaminathan and Heinz, 2012; Moon et al., 2014), particularly in a noisy multiple-source environment, suggesting a feature-specific binding between the TFS and envelope components.

To estimate potential mechanisms underlying the binding of TFS and envelope signals in the auditory brainstem, in this study Pearson correlation tests were conducted between the normalized amplitude of FFR\textsubscript{TFS} and that of FFR\textsubscript{Env}. The results showed that the correlation between FFR\textsubscript{TFS} and FFR\textsubscript{Env} was significant with the source specificity particularly under the interaurally correlated listening condition. Moreover, Pearson correlation between ΔFFR\textsubscript{TFS} and ΔFFR\textsubscript{Env} (ΔFFR, the relative difference between the FFR relative amplitude when the IAC is 1 and that when the IAC is 0) was also significant.

In a “cocktail-party” listening condition with multiple sound sources, if each of the narrow-band-signal series in the peripheral auditory system for an individual source is decomposed into both quickly-varying TFSs and slowly-varying envelopes, how are listeners able to perceive individual sound images? If binaural processing is critical for sound localization/recognition under such adverse listening conditions and the brainstem representation of TFS signals (i.e., FFR\textsubscript{TFS}) is more sensitive to changes in IAC than the brainstem representation of envelope signals (i.e., FFR\textsubscript{Env}), the functional dichotomy theory is not sufficient to elucidate how
distinctive auditory objects are able to form under the multiple-source conditions. Thus, the results of this study will encourage further studies in this line of research.

4.3. Limitations

It should be noted that the scalp-recorded FFRs may also be affected by the phase cancelling effect on volume conducted signals under the out-of-phase condition, particularly when the binaural sounds are uncorrelated. Since FFRTFS fluctuates faster than FFREnv, the phase cancelling effect is likely more prevalent for FFRTFS than FFREnv. Therefore, the difference in IAC sensitivity between FFRTFS and FFREnv should be further investigated in the future.

5. Conclusions

(1) The TFS and envelope components of a narrowband noise are faithfully represented in the human auditory brainstem by the FFRTFS and FFREnv, respectively.

(2) Both sustained FFRTFS and FFREnv, but not the transient brainstem onset responses, are sensitive to IAC, and the FFRTFS is more sensitive to IAC than the FFREnv.

(3) The brainstem FFRTFS and FFREnv are correlated to each other with the source specificity.

(4) Both the highly precise representation of the TFS information in the human auditory brainstem and the source-specific correlation between FFRTFS and FFREnv indicate a brainstem-processing strategy underlying feature integrations for auditory perception.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31771252, 31700994), the Beijing Municipal Science and Tech Commission (Z161100002616017), the National High Technology Research and Development Program of China (863 Program: 2015AA010630), the “985” grants from Peking University, and the China Postdoctoral Science Foundation (2016M601066).

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.heares.2018.05.015.

References

Rosen, S., 1992. Temporal information in speech: acoustic, auditory and linguistic