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Much has been debated about whether the neural plasticity mediating perceptual learning takes place at the
sensory or decision-making stage in the brain. To investigate this, we trained human subjects in a visual motion
direction discrimination task. Behavioral performance and BOLD signals were measured before, immediately
after, and two weeks after training. Parallel to subjects' long-lasting behavioral improvement, the neural
selectivity in V3A and the effective connectivity from V3A to IPS (intraparietal sulcus, a motion decision-
making area) exhibited a persistent increase for the trained direction. Moreover, the improvement was well
explained by a linear combination of the selectivity and connectivity increases. These findings suggest that the
long-term neural mechanisms of motion perceptual learning are implemented by sharpening cortical tuning to
trained stimuli at the sensory processing stage, as well as by optimizing the connections between sensory and
decision-making areas in the brain.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Training can improve performance for many visual tasks, which is
referred to as visual perceptual learning (VPL) (Sagi, 2011; Watanabe
and Sasaki, 2014). The neural basis of VPL has generated a lot of interest
in the past decades and at the same time is highly controversial. VPL is
commonly characterized by its specificity to the trained stimulus,
leading to the hypothesis that the underlying neural changes occur in
early visual areas (Fahle and Poggio, 2002). However, this hypothesis
was mainly based on psychophysical data and was supported only
inconsistently from neurophysiological studies (Schoups et al. 2001;
Ghose et al., 2002; Yang and Maunsell, 2004; Furmanski et al., 2004;
Hua et al., 2010). Even within psychophysics, however, several recent
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studies show that the specificity of VPL can be eliminated by training
with an easy task (Liu, 1999; Liu and Weinshall, 2000), training with a
different task (Xiao et al., 2008), or mere exposure to a different stimu-
lus (Zhang et al., 2010b), suggesting that VPL is mediated by higher cor-
tical areas. So far, this alternative hypothesis has been little tested with
neurophysiological methods, though researchers have found learning-
related neural changes in decision-making and attention-related areas
such as intraparietal sulcus (IPS) and anterior cingulate cortex (Lewis
and Van Essen, 2000; Law and Gold, 2008; Kahnt et al., 2011).

Another important, but unanswered question in VPL is its long-term
neural mechanisms. To date, almost all VPL studies have focused on
immediate neural changes after training. However, persistency,
a hallmark feature of VPL, remains largely unknown inside the
brain. Yotsumoto et al. (2008) tracked the neural changes induced
by a texture discrimination task, and found a transient activity
enhancement in V1. This enhancement receded after two weeks,
while the behavioral improvement persisted. Parallel findings have
been reported in auditory and motor modalities. For example, cortical
expansion was detected immediately after training in both modalities,
but faded out weeks later (Molina-Luna et al., 2008; Reed et al., 2011).
These findings raised questions on previous claims that are based on
neural changes immediately after training, and prompted us to
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investigate what longer-lasting neural changes may be associated
with VPL.

In our current investigation, we studied visual motion perceptual
learning, with two specific aims: whether the neural modifications
occurred at low- or high-level, and what neural modifications may
be longer-lasting. Human subjects were trained in amotion direction
discrimination task. Their behavioral performance and BOLD signals
were measured before, immediately after, and two weeks after
training. We examined not only how learning affected the local
representation of the trained motion direction within individual
visual cortical areas and IPS, a motion decision-making area and
homologue of monkey LIP (lateral intraparietal area) (Kayser
et al., 2010), but also how learning changed the effective connec-
tivities between the visual areas and IPS. Law and Gold (2008,
2009) modeled the learning process as a high-level decision unit
refining its connectivities to sensory neurons tuned to a specific
motion direction through response reweighting (Poggio et al.,
1992; Dosher and Lu, 1998; Bejjanki et al., 2011). However,
there is no empirical evidence yet directly supporting this
hypothesis.

Here, we report that, parallel to the long-lasting motion discrimina-
tion improvement, the neural selectivity in V3A and the effective
connectivity from V3A to IPS for the trained direction exhibited a
persistent increase after training, as revealed by both decoding and
encoding analyses and dynamic causal modeling (DCM). We found
that the behavioral learning could be well explained by a linear com-
bination of improvements from these two sources. These findings
make headways towards resolving previous controversies and
demonstrate that perceptual learning should be attributed to
changes both in the sensory representation of trained stimuli and
the transmission of sensory signals to decision circuitry.
Materials and methods

Subjects

Seventeen subjects (nine female) participated in the study.
They were naïve to the purpose of the study and had never participated
in any perceptual learning experiment before. All subjects were
right-handed with reported normal or corrected-to-normal vision and
had no known neurological or visual disorders. Their ages ranged from
20 to 25 years. They gave written, informed consent in accordance
with the procedures and protocols approved by the human subject
review committee of Peking University.
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Fig. 1. Stimuli and experimental protocol. (A) Schematic description of a two-alternative force
thresholds. (B) Experimental protocol. Subjects underwent eight daily training sessions. The pre
days before, immediately after, and two weeks after training.
Stimuli and apparatus

Visual stimuli were RDKs (Fig. 1A). All dots in a RDK moved in the
same direction (luminance: 3.76 cd/m2; speed: 10°/s). At any one
moment, 400 dots were visible within an 8° circular aperture. The
dots were presented on a gray background (luminance: 28.46 cd/m2).
In the psychophysical experiments, the stimuli were presented on
an IIYAMAHM204DT 22-inmonitor (refresh rate: 60 Hz; spatial resolu-
tion: 1024 × 768). Subjects viewed the stimuli from a distance of 60 cm.
Their head position was stabilized using a head and chin rest. In the
fMRI experiments, the stimuli were back-projected via a video projector
(refresh rate: 60 Hz; spatial resolution: 1024 × 768) onto a translucent
screen placed inside the scanner bore. Subjects viewed the stimuli
through a mirror located above their eyes. The viewing distance was
83 cm. Throughout the experiments, subjects were asked to fixate a
small white dot presented at the center of the visual stimuli.
Designs

The main experiment consisted of four phases — pre-training test
(Pre), motion direction discrimination training, post-training test 1
(Post1), and post-training test 2 (Post2). Pre and Post1 took place on
the days immediately before and after training, and Post2 took place
two weeks after training (Fig. 1B).

During the training phase, each subject underwent eight daily
training sessions to perform a motion direction discrimination task at
a direction of θ, which was chosen randomly from eight directions:
22.5°, 67.5°, 112.5°, 157.5°, 202.5°, 247.5°, 292.5°, and 337.5° (0° was
the rightward direction) at the beginning and was fixed for all the
sessions. A daily session (about 1 h) consisted of 30 QUEST staircases
of 40 trials (Watson and Pelli, 1983). In a trial, two RDKs with motion
directions of θ and θ ± Δθ were presented successively for 200 ms
each and were separated by a 600 ms blank interval (Fig. 1A). The
temporal order of these two RDKs was randomized. Subjects were
asked to make a two-alternative forced-choice (2-AFC) judgment of
the direction of the second RDK relative to the first one (clockwise or
counter-clockwise). Informative feedback was provided after each
response by brightening (correct response) or dimming (wrong
response) the fixation point, which could facilitate learning (Goldhacker
et al., 2014). The next trial began 1 s after feedback. Δθ varied trial
by trial and was controlled by the QUEST staircase to estimate
subjects' discrimination thresholds at 75% correct. To measure the
time course of the training effect (learning curve), discrimination
thresholds from the 30 staircases in a daily training session were
               200 ms                 response
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averaged, and then plotted as a function of training day. The learning
curves were fitted with a power function (Jeter et al., 2009).

During the three test phases, psychophysical and fMRI tests were
performed at four motion directions, which were 0°, 30°, 60°, and 90°
deviated from the trained direction all either clockwise or counter-
clockwise (hereafter referred to as 0°, 30°, 60°, and 90°). We first
measured motion direction discrimination thresholds at these four
directions. Ten QUEST staircases (same as above) were completed for
each direction. The four directions were counterbalanced for individual
subjects. Discrimination thresholds from the 10 staircases for each
direction were averaged as a measure of subjects' discrimination
performance. Subjects' performance improvement at a direction
was calculated as (pre-training threshold − post-training threshold) /
pre-training threshold × 100%.

After acquiring psychophysical discrimination thresholds, we mea-
sured BOLD signals responding to the four motion directions in 16
fMRI runs in two daily sessions (eight runs per session). Each run
contained 10 stimulus blocks of 12 s, two blocks for one of five stimulus
conditions (see below). Stimulus blocks were interleaved with 12 s
fixation blocks. Each stimulus block consisted of five trials. In a trial,
two RDKs were each presented for 200 ms. They were separated by a
600 ms blank interval and were followed by a 1400 ms blank interval.
Similar to the psychophysical test, subjects were asked to make a
2-AFC judgment (clockwise or counter-clockwise) of the secondmotion
direction relative to the first one by pressing one of two buttons. For the
directions of the two RDKs, onewasfixed in a block and could be 0°, 30°,
60°, or 90°. The other is deviated from the fixed one by±Δθ, whichwas
the discrimination threshold measured in the psychophysical test and
made subjects perform equally well (75% correct) across the four
stimulus conditions and the tests. At Post1 and Post2, we added the
fifth stimulus condition to ensure that subjects viewed the same stimuli
at the 0° direction as those at Pre. In this condition, the RDKs of 0° and
Δθ were presented. Δθ was the discrimination threshold acquired at
Pre. The fifth stimulus condition was also added at Pre to equalize the
numbers of stimulus conditions at Pre, Post1, and Post2. Here, the
RDKs of 0° and 0.5 × Δθ were presented. Prior to the experiments,
subjects practiced 10 staircases for each direction to get familiar with
the stimuli and the experimental procedure.

Defining regions of interest

Retinotopic visual areas (V1, V2, V3, V3A, and V4) were defined by a
standard phase-encodedmethod developed by Sereno et al. (1995) and
Engel et al. (1997), in which subjects viewed a rotating wedge and an
expanding ring that created traveling waves of neural activity in visual
cortex. An independent block-design run was performed to localize
the regions of interest (ROIs) in the retinotopic areas, MT+, and IPS.
In this run, the stimulus was identical to that in the main experiment
except that each dot moved in a random direction. The dots traveled
back and forth, alternating directions once per second. The run
contained eight moving dot blocks of 12 s, interleaved with stationary
dot blocks of 12 s. ROIs were identified as cortical areas that responded
more strongly to the moving dot blocks than to the stationary dot
blocks. MT+ was defined as a set of significantly responsive voxels
within or near the occipital continuation of the inferior temporal sulcus.
IPS was defined as a set of significantly responsive voxels in the medial
dorsal intraparietal sulcus, which is also referred to as IPS2 (Swisher
et al. 2007; Wandell et al., 2007).

MRI data acquisition

MRI data were collected using a 3 T Siemens Trio scanner with a
12-channel phase-array coil. BOLD signals were measured with an EPI
sequence (TE: 30 ms; TR: 2000 ms; FOV: 196 × 196 mm2; matrix:
64 × 64; flip angle: 90°; slice thickness: 3 mm; gap: 0 mm; number of
slices: 33; slice orientation: axial). The bottom slice was positioned at
the bottom of the temporal lobe. A high-resolution 3D structural
data set (3D MPRAGE; 1 × 1 × 1 mm3 resolution) was collected before
functional runs. Subjects underwent seven MRI sessions in total — one
for retinotopic mapping, two for Pre, Post1, and Post2, respectively.

MRI data preprocessing

The anatomical volume for each subject at Pre was transformed
into the anterior commissure–posterior commissure (AC–PC) space
(Talairach and Tournoux, 1988). Functional volumes at Pre, Post1, and
Post2 were preprocessed using BrainVoyager QX, including 3D motion
correction, linear trend removal, and high-pass filtering (0.015 Hz)
(Smith et al., 1999). Head motion within any MRI session was less
than 3 mm for any subject. The functional volumes were then aligned
to the anatomical volume at Pre and transformed into the AC–PC
space. The first 6 s of BOLD signalswere discarded tominimize transient
magnetic saturation effects.

For each subject and ROI, we used a general linear model (GLM)
to select 80 most responsive voxels (across both hemispheres)
in the localizer run. We included 80 voxels because all ROIs in all
subjects contained at least 80 voxels. If we had included more than
80 voxels, some ROIs in some subjects could not meet this criterion.
BOLD signals from responsive voxels in an ROI were analyzed in two
ways — univariate analysis and multivariate analyses (including
decoding analysis and forward modeling analysis).

Univariate analysis

The univariate analysis examined whether training could modulate
the mean BOLD amplitude for the trained direction in an ROI. For each
ROI, the time course of BOLD signal in a run was first extracted by
averaging the signals from all the voxels. Then, beta values were
estimated for individual blocks with a GLM procedure. A box-car
function was used to model all the trials in a block. The hemodynamic
response model used in our study was the default double-gamma HRF
in BrainVoyager QX (response undershoot ratio = 6, time to response
peak = 5 s, time to undershoot peak = 15 s). The BOLD amplitudes
for the five conditions were the averaged beta values across 16 runs.
Similar to previous studies (Op de Beeck et al., 2006), we defined
the learning modulation index (LMI) for BOLD amplitude as
[Amp (trained direction post-training) − Amp (trained direction
pre-training)] − [Amp (untrained directions post-training) − Amp
(untrained directions pre-training)]. The amplitude for the untrained
directions was the average amplitude for the 30°, 60°, and 90°
directions. The LMI quantified the amplitude difference for the trained
direction before and after training while subtracting out the difference
for the untrained directions. By contrasting the differences for the
trained and untrained directions, the LMI measures isolated those
effects specific to the trained direction and distinguished these
from general practice effects or common sources of variance
(e.g., day-to-day measurement variation, stimulus repetition).
An index significantly above/below zero indicates that training
increased/decreased the BOLD signal to the trained direction.

Multivariate analysis–decoding analysis

A major limitation of the univariate analysis is that different
spatial patterns of BOLD signal modulation across voxels can produce
indistinguishable changes in the mean BOLD amplitude in an ROI,
whichmay lead to an incorrect conclusion that training has no influence
on neural activity within the ROI. To solve this problem, we used the
decoding analysis to examine whether perceptual learning could
modify the spatially distributed activation pattern evoked by the trained
direction across all voxels within an ROI.

Similar to the univariate analysis, we first used a GLM procedure to
estimate beta values for individually responsive voxels in a stimulus
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block, resulting in 32 beta value patterns per test for each stimulus
condition and ROI. For the decoding analysis, we trained linear support
vector machine (SVM) classifiers (www.csie.ntu.edu.tw/~cjlin/libsvm)
using these patterns per ROI and calculated mean decoding accuracies
following a leave-one-run-out cross validation procedure. That is,
we trained one-against-one binary classifiers (e.g., 30° vs. 90°) on 30
training patterns and tested their accuracy on the remaining two pat-
terns per stimulus condition and ROI using a 16-fold cross-validation
procedure. These binary classifiers were used to construct a four-way
classifier for decoding the four motion directions (Kamitani and Tong,
2005; Preston et al., 2008; Serences et al., 2009; Zhang et al., 2010a).
The chance performance for the four-way classifier was 0.25.
Similar to the LMI for BOLD amplitudes, we defined the LMI for
decoding accuracy as [Acc (trained direction post-training) − Acc
(trained direction pre-training)] − [Acc (untrained directions
post-training) − Acc (untrained directions pre-training)], where
Acc stands for decoding accuracy. The decoding accuracy for the
untrained directions was the average accuracy for the 30°, 60°,
and 90° directions.

Multivariate analysis — forward model

The decoding analysis is a sensitive tool to detect changes in spatial
activation pattern, as reflected by changes in decoding accuracy.
However, this analysis by itself cannot tell how or why a change
occurred. For example, improved decoding accuracy in an ROI could
reflect improved stimulus selectivity, or reduced noise level, or some
other factors. The forward modeling analysis (Brouwer and Heeger,
2009, 2011; Saproo and Serences, 2014) provides a way to probe the
stimulus selectivity issue. It has been suggested that perceptual learning
could improve the neural selectivity for trained stimuli (Schoups et al.,
2001; Zhang et al., 2010a). In practice, the decoding analysis and the
forward modeling analysis can be used in a complementary manner.
The decoding analysis usually serves as an initial tool for an exploratory
purpose to identify cortical areas carrying some information about an
experimental manipulation (e.g., learning). Then a forward model can
be developed to characterize the underlying neural mechanisms in
these areas (Serences and Saproo, 2012).

For an ROI showing a decoding accuracy change, we used the
forward model described by Brouwer and Heeger (2009) to estimate
themagnitude of responses in direction-selective neuronal populations
in the ROI before and after training. The model decomposed voxel
responses into a set of hypothetical direction-selective channel
responses (Saproo and Serences, 2014), assuming that BOLD responses
from voxels in the ROI reflect an approximately linear mixture of
responses frommany subpopulations of neuronswith different degrees
of selectivity to different directions of motion (Boynton et al., 1996;
Heeger et al., 2000; Logothetis and Wandell, 2004; Kahnt et al., 2011).

The BOLD response of each voxel for each of the four motion
directions (i.e., the trained and untrained directions) was modeled as
a linear sum of weighted responses of 12 different direction-selective
channels, with the direction selectivity of the channels linearly spaced
between 0° and 360° (0°, 30°, 60°, …, 330°). The tuning profile of each
channel was modeled using a sinusoidal function raised to the fourth
power (Saproo and Serences, 2014).

The computation consisted of two stages. The first stage was to
estimate the weights on the 12 hypothetical channels separately for
each voxel. With these weights, the second stage was to compute the
channel outputs associated with the spatially distributed pattern of
BOLD signal across voxels evoked by the motion directions. In other
words, this stage allowed us to transform the voxel responses to the
channel responses, each tuned to a different direction.

Recall that, there were 32 spatial patterns of voxel response
(i.e., beta value) per test for each motion direction and ROI. These 32
patterns were divided into a training set (30 patterns) and a test set
(2 patterns). The training set was used to estimate the channel weights
in the first stage and the test set was used to compute the channel
responses in the second stage. In the first stage, the weight of each
channel in response to each of the four directions was estimated
using a standard GLM (Eq. 1). Let k be the number of channels,
m the number of voxels, and n the number of repeated measurements
(i.e., 4 directions × 30 patterns in the training set). The matrix of voxel
responses in the training set (B1, m × n) was related to the matrix of
hypothetical channel outputs (C1, k × n) by a weight matrix (W,m × k).

B1 ¼ WC1 ð1Þ

The ordinary least-squares estimate of W is computed as follows:

Ŵ ¼ B1C
T
1 C1C

T
1

� �−1
: ð2Þ

In the second stage, the pattern of voxel response in the test set B2
was used to compute the estimated channel responses C2 using the
previously computed weights W.

C2 ¼ dWTŴ
� �−1dWTB2 ð3Þ

The training/testing procedure was repeated for all combinations of
the 32 patterns. Finally, the channel response profile computed each
time was circularly shifted such that the motion direction that evoked
the response profile was set to 0° offset in the abscissa of Fig. 6. The
responseswere further collapsed across channels with the samemagni-
tude of channel offset, but opposite signs (i.e., positive and negative).

Dynamic causal modeling (DCM)

TheDCManalysiswas performed to examinewhether therewas any
connectivity change between sensory areas (e.g., V3A and MT+) and
decision-making areas (e.g., IPS) after training. Effective connectivities
between V3A and IPS and between MT+ and IPS were analyzed
with the DCM (Friston et al., 2003; Friston, 2006) in SPM10. For each
of these areas in bothhemispheres, voxelswithin a 5-mm-radius sphere
centered on the most responsive voxel in the localizer run were
extracted, and their time series were used for the DCM analysis. The
estimated DCM parameters were later averaged across two hemi-
spheres using the Bayesian model averaging method (Friston, 2006).
The mean MNI coordinates of these voxels and the SEs across subjects
in V3A, MT+, and IPS were [28.5 ± 1.4, −86.9 ± 1.7, 10.4 ± 1.6],
[44.2 ± 0.9, −65.6 ± 1.6, 7.0 ± 1.5], and [25.4 ± 1.7, −58.6 ± 2.3,
52.1 ± 1.3] for the right hemisphere; and [−27.0 ± 0.9, −90.3 ± 2.2,
13.9 ± 2.5], [−50.0 ± 1.1, −70.7 ± 1.4, 7.9 ± 1.7], and [−27.0 ±
2.0,−57.8 ± 2.9, 52.4 ± 1.7] for the left hemisphere, respectively.

DCMs have three sets of parameters: extrinsic inputs into one or
more regions, intrinsic connectivities among the modeled regions, and
bilinear parameters encoding the modulation of the specified intrinsic
connections by experimentalmanipulations. The third set of parameters
are used to quantify modulatory effects, which reflect increases or de-
creases in connectivity between two regions given some experimental
manipulation, compared with the intrinsic connections between the
same regions that capture connectivity in the absence of experimental
manipulation. FMRI data were modeled with a GLM procedure,
including regressors for the trained and untrained directions, as well
as a condition comprising all the directions (i.e., the extrinsic input to
V3A and MT+). Bidirectional intrinsic connections were hypothesized
to exist between V3A and IPS and between MT+ and IPS, and these
connections were modulated by our experimental manipulations
(i.e., the modulatory input) (Fig. 7A). The modulatory input could be
either the trained direction or the untrained directions. We examined
three models for modeling the modulatory effect by the trained or the
untrained directions, including feedforward, feedback, and recurrent

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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models. We fitted each of these three models for each subject. Using a
hierarchical Bayesian approach (Friston, 2006), we compared the
three models by computing the exceedance probability of each model,
i.e., the probability to which a given model is more likely than the
other two models to have generated data from a randomly selected
subject. In the best model, we examined changes in the modulatory
effects by the trained and untrained directions at Post1 and Post2,
relative to Pre. In the psychophysical and fMRI data analyses, Bonferroni
correction was applied with t-tests and ANOVAs involving multiple
comparisons.

Results

Psychophysical results

Subjects underwent eight daily training sessions (1000 trials per
session) to discriminate motion directions around a pre-specified, but
randomly selected direction (hereafter the direction is referred to as
0°). In a trial, two random-dot kinematograms (RDKs) with slightly
different directions were presented sequentially. Subjects were asked
to make a two-alternative forced-choice (2-AFC) judgment of the
direction of the second RDK relative to the first one (clockwise or
counter-clockwise) (Fig. 1A). The QUEST staircase was used to control
the direction difference between the two RDKs adaptively to estimate
subjects' motion direction discrimination thresholds at 75% correct.
Throughout the training, subjects' discrimination thresholds gradually
decreased and saturated after day 6 (Fig. 2A). The thresholds
on days 7 and 8 were not significantly different from that on day 6
(both t(16) b 1.39, p N 0.05). Note that, in our psychophysical and
fMRI data analyses, Bonferroni correction was applied with t-tests
and ANOVAs involving multiple comparisons.

Psychophysical and fMRI tests were performed on the days
before (Pre), immediately after (Post1), and two weeks after training
(Post2) (Fig. 1B). We first measured motion direction discrimination
thresholds at the trained direction, aswell as at the untrained directions
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Fig. 2. Psychophysical results. (A) Learning curve. Motion direction discrimination thresholds a
the trained direction (0°) and the untrained directions (30°, 60°, and 90°) at Pre, Post1, and Po
(C) Percent improvement in motion direction discrimination performance for the trained and
difference between the trained and the untrained directions (*p b 0.05). Error bars denote 1 SE
that were 30°, 60°, and 90° away from the trained direction. The
discrimination thresholds were submitted to a repeated-measures
ANOVA with test (Pre, Post1, and Post2) and direction (0°, 30°, 60°,
and 90°) as within-subject factors. We found a significant main effect
of test (F(2,32)= 16.73, p b 0.01) and a significant interaction between
test and direction (F(6,96) = 16.78, p b 0.01) (Fig. 2B). To compare the
learning effects at the trained and untrained directions, we calculated
the percent improvements in discrimination performance after training.
The improvement for the trained direction at Post1 and Post2 were 41%
and 33%, respectively, which were significantly higher than those for
the untrained directions (b15%) (all t(16) N 3.4, p b 0.01) (Fig. 2C).
These results demonstrated that training led to a significant learning
effect, which was specific to the trained direction and persisted for at
least two weeks.

Univariate analysis of fMRI data

After acquiring the discrimination thresholds, we measured BOLD
signals responding to the trained and untrained directions in 16 fMRI
runs, in which stimulus blocks were interleaved with blank intervals.
Each stimulus block contained five trials. The trials and subjects' task
were very similar to those in the psychophysical tests except that the
direction difference of two stimuli in a trial was the discrimination
threshold obtained from the preceding psychophysical test. This
ensured that subjects performed equally well at 75% accuracy and
therefore hold attention constant across blocks and tests, which was
confirmed by subjects' behavioral responses during fMRI data acquisi-
tion for the 0°, 30°, 60°, and 90° directions (Pre: 78 ± 2%, 72 ± 2%,
75 ± 2%, 78 ± 2%; Post1: 79 ± 2%, 75 ± 2%, 77 ± 2%, 79 ± 1%; Post2:
78 ± 2%, 73 ± 2%, 74 ± 2%, 77 ± 2%). Subjects' response accuracies
were not significantly different among the three test phases and the
four directions (all t(16) b 1.31, p N 0.05).

We focused fMRI data analyses on BOLD signals in seven ROIs,
including V1, V2, V3, V3A, V4, MT+, and IPS. Eighty most responsive
voxels were selected per ROI. Since the behavioral learning effect
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persisted for at least two weeks after training, if any training-induced
neural change is considered to constitute the neural mechanisms of
the learning, the change should manifest at both Post1 and Post2.
Note that subjects showed a similar behavioral learning effect for the
three untrained directions, suggesting that training-induced neural
changes (if there were any) associated with these three directions
might be similar. For all the fMRI data analyses (including the univariate
analysis, the multivariate analyses, and the DCM analysis), we not only
compared the data between the trained direction and each of the
untrained directions, but also compared the data for the trained
direction with the averaged data for the untrained directions.
Since the results of the comparisons were very similar, for the sake of
simplicity, we chose to present the comparison between the trained
direction and the average of the untrained directions.

With the univariate analysis, we examined whether training could
change the mean BOLD amplitude for the trained direction when
comparedwith the untrained directions. For each ROI, BOLD amplitudes
(i.e., beta values) for the trained and untrained directions were
estimated with a general linear model (GLM). Beta values were
submitted to a repeated-measures ANOVA with test (Pre, Post1, and
Post2) and direction (trained and untrained) as within-subject factors.
A significant interaction between test and direction was found only in
V3A (F(2,32) = 6.57, p b 0.05), suggesting that training had different
effects on the mean BOLD amplitudes evoked by the trained and
untrained directions in this area (Fig. 3A).

To isolate the BOLD amplitude change that was specific to the trained
direction and to distinguish it from general practice effects or common
sources of variance, we defined the learning modulation index (LMI) for
BOLDamplitude as [Amp (traineddirectionpost-training)−Amp (traineddi-
rection pre-training)] − [Amp (untrained directions post-training) − Amp
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Fig. 3. Results of the univariate analysis of fMRI data. (A) BOLD amplitudes for the trained and u
below zero (*p b 0.05). Error bars denote 1 SEM across subjects.
(untrained directions pre-training)]. The LMI quantified the ampli-
tude difference for the trained direction before and after training
while subtracting out the difference for the untrained directions.
An index significantly above/below zero indicates that training
increased/decreased the BOLD signal to the trained direction.We calcu-
lated the LMI for BOLD amplitude in V3A because only this area showed
a significant interaction effect in the ANOVA above. At Post1, the index,
though very small, was significantly lower than zero (t(16) = 4.35,
p b 0.01). However, relative to Post1, the magnitude of the index
decreased at Post2 (t(16) = 2.35, p b 0.05), and was not significantly
different from zero (Fig. 3B). These results demonstrated that training
decreased the cortical response in V3A to the trained direction immedi-
ately after training, but the decrease vanished two weeks later even
though the improved behavioral performance was largely maintained.
This finding suggests that changes in mean BOLD amplitude might not
play a critical role in the long-term neural mechanisms of the motion
perceptual learning.
Decoding analysis of fMRI data

Since theunivariate analysis failed to detect long-termneural chang-
es associated with the persistent behavioral learning effect, we then
performed themore sensitivemultivariate analysis to examinewhether
perceptual learning could modify the spatially distributed activation
pattern evoked by the trained direction across all voxels within an
ROI. More specifically, we used the decoding analysis to examine
whether training could improve the decoding accuracy for the trained
direction when compared with the untrained directions. For each ROI,
we trained the SVM classifiers using the spatial pattern of BOLD signals
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and calculated the decoding accuracy following a leave-one-run-out
cross validation procedure.

Decoding accuracies were submitted to a repeated-measures
ANOVA with test (Pre, Post1, and Post2) and direction (trained and
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untrained) as within-subject factors. A significant interaction between
test and direction was found in V3A (F(2,32) = 19.07, p b 0.001),
suggesting that training may have different effects on the decoding
accuracies for the trained and untrained directions in this area
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es that are significantly above zero (*p b 0.05). Error bars denote 1 SEM across subjects.
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(Fig. 4A). Similar to the LMI for BOLD amplitude, we defined the LMI for
decoding accuracy as [Acc (trained direction post-training) − Acc
(trained direction pre-training)] − [Acc (untrained directions post--
training) − Acc (untrained directions pre-training)].We found that V3A
exhibited a significantly positive LMI for decoding accuracy at both
Post1 and Post2 (both t(16) N 4.64, p b 0.001) (Fig. 4B),
demonstrating that the improved decoding accuracy in V3A
persisted over the entire time course of the measurement.

We further examined if this finding depended on the number of
selected voxels. For each ROI, we randomly sampled selected 5–80
responsive voxels and performed the decoding analysis. When at least
50 voxels were selected, the LMI for decoding accuracy in V3A was sig-
nificantly above zero at Post1 and Post2 (all t(16) N 4.05, p b 0.05)
(Fig. 5). Other ROIs did not show a significant positive index within
this voxel number range. This result demonstrated that the V3A finding
was robust across the selected voxel numbers.

Recall that, in the blocks containing the trained direction, the stimuli
were slightly different across Pre, Post1, and Post2. In a trial, the RDKs
of 0° and ±Δθ were presented. Δθ was the discrimination threshold
measured in the preceding psychophysical test. Although the 0° RDK
was always presented in the three tests, Δθ decreased after training.
It is possible therefore that the observed fMRI effects were due to the
stimulus difference. To rule out this explanation, at Post1 and Post2,
we also measured BOLD signals responding to the same trained
direction blocks as those at Pre. We found that, for all the ROIs, using
Δθ acquired at Pre had little effect on the beta value (all t(16) b 2.08,
p N 0.05) and the decoding accuracy (all t(16) b 1.96, p N 0.05) for the
trained direction. Furthermore, with Δθ for the trained direction
acquired at Pre, the LMI for decoding accuracy in V3A (but not
other ROIs) was significantly above zero at Post1 and Post2 (both
t(16) N 3.53, p b 0.05).

Forward modeling analysis of fMRI data

The decoding analysis revealed an increase in decoding accuracy for
the trained direction in V3A, suggesting that the neural representation
of the trained direction became more separated from those of the
untrained directions after training. However, why the change occurred
remained unclear. One possibility is that perceptual learning increased
the neural selectivity for the trained direction in V3A. To evaluate this
possibility, we used a forward model to estimate the magnitude of
responses in direction-selective neuronal populations in V3A before
and after training. The model decomposed voxel responses into a set
of hypothetical direction-selective channel responses.

Fig. 6 shows the direction-selective channel responses for the
trained and untrained directions at Pre, Post1, and Post2. For the trained
direction, the channel response profile became steeper after training.
Repeated-measures ANOVAs revealed significant interactions between
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Fig. 6. Normalized BOLD responses to the trained (left) and untrained (right) stimuli in
direction-selective channels in V3A tuned to different direction offsets with respect to
the stimulus direction (where stimulus direction is 0° on the abscissa). The channel response
functions were fitted using a Gaussian function. Error bars denote 1 SEM across subjects.
test and channel offset (Pre vs. Post1: F(4,64) = 9.26, p b 0.001; Pre
vs. Post2: F(4,64) = 5.58, p b 0.001). Relative to Pre, training increased
the responses of direction-selective channels tuned to the trained direc-
tion (0° offset: t(16) = 3.40, p b 0.001) and decreased the responses of
channels tuned away from the trained direction (60° offset: t(16) =
2.90, p = 0.01; 90° offset: t(16) = 2.70, p b 0.05) at Post1. This modu-
lation effect was well preserved at Post2 (0° offset: t(16) = 2.98,
p b 0.001; 60° offset: t(16) = 2.41, p b 0.05). For the untrained direc-
tions, the channel response profile showed little change after training
(Pre vs. Post1: F(4,64) = 0.205, p N 0.05; Pre vs. Post2: F(4,64) =
0.225, p N 0.05). These results suggest that the persistent behavioral
learning effect could be (partially) attributed to the long-term improved
neural selectivity for the trained direction in V3A.

We fit the channel response profiles with a Gaussian function
and used the FWHM (full width at half maximum) bandwidth of the
Gaussian to quantify the neural selectivity. The bandwidths at Post1
(70.08°), and Post2 (74.47°) were significantly smaller than that at Pre
(83.74°) (both t(16) N 4.20, p b 0.01), consistent with the statistical
results above.
Effective connectivity analysis of fMRI data

Law and Gold (2009) modeled perceptual learning process as a
high-level decision unit refining its connectivities to sensory neurons
through response reweighting. Inspired by this, we performed the
DCM analysis focusing on the directional connectivities between V3A
and IPS and between MT+ and IPS based on BOLD signals from these
areas. These three areas were selected for several reasons. First, they
are critical brain areas for visual motion processing. Second, the forward
modeling analysis has shown that the neural selectivity in V3A for the
trained direction increased after training. Third, human IPS, as a putative
homologue of monkey LIP (Sereno et al., 2001), has been demonstrated
as a pivotal area for motion decision-making (Heekeren et al., 2008;
Tosoni et al., 2008; Kayser et al., 2010). Fourth, the modeling work
by Law and Gold (2009) attributed motion perceptual learning to the
connectivity change between MT and LIP. Bidirectional intrinsic
connections were hypothesized to exist between V3A and IPS and
betweenMT+ and IPS. These intrinsic connections could bemodulated
by the trained and untrained stimuli. Given the extrinsic input to V3A
and MT+, we examined feedforward, feedback, and recurrent models
for modeling the modulatory effect by the trained and the untrained
stimuli (Fig. 7A).

For the trained direction, we computed the exceedance probability
of each model (Friston, 2006). The result showed that the feedforward,
feedback, and recurrent models had the exceedance probabilities of
64.40%, 28.16%, and 7.44%, respectively, suggesting that the feedforward
model was the best one to explain the modulatory effect by the trained
direction (Fig. 7B) (note that the recurrent model had more degrees
of freedom, so was subject to more stringent criteria). We further
compared the modulatory effects at Pre, Post1, and Post2. Relative to
Pre, the modulatory effect on the forward connection from V3A to IPS
significantly increased at Post1 and Post2 (both t(16) N 3.09, p b0.05),
but little effect was found with the connection from MT+ to IPS (both
t(16) b 1.38, p N 0.05) (Fig. 7C). For the untrained directions, the exceed-
ance probabilities of the feedforward, feedback, and recurrent models
were 88.45%, 11.52%, and 0.03%, respectively, suggesting that the mod-
ulatory effect by the untrained directions could also be best explained
by the feedforward model (Fig. 7D). However, for the untrained direc-
tions, the modulatory effect on the forward connections from V3A to
IPS and from MT+ to IPS did not change significantly after training
(all t(16) b 0.98, p N 0.05) (Fig. 7E). These findings suggest that the in-
creased connectivity fromV3A to IPSmay have contributed significantly
to the long-term neural mechanisms of themotion perceptual learning.
It is worthwhile to point out that whether or not including MT+ in the
model does not affect the connectivity result between V3A and IPS.
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Having shown that training increased the forward connectivity
from V3A to IPS, it is natural to ask whether training could induce
any connectivity change at lower levels in the visual motion
processing hierarchy. Accordingly, we built another DCM model
containing the connections between V1 and V3A and between V1
andMT+.We did not find any significant change with the connections
after training.

Correlation and regression analyses between psychophysical and
fMRI measures

To further evaluate the role of the neural changes revealed in
the motion perceptual learning, we calculated the correlation
coefficients between the behavioral measure (i.e., improvement
in percentage) and the fMRI measures (i.e., the bandwidth
change in V3A and the connectivity change from V3A to IPS)
across individual subjects. No significant correlation was found
between the performance change and the bandwidth change at
Post1 and Post2 (Figs. 8A and B). Only at Post1 was the perfor-
mance change significantly correlated with the connectivity
change (Fig. 8C), but not at Post2 (Fig. 8D). These results showed
that the performance change could not be well predicted by any
of the neural changes alone.

We then built a multiple linear regression model to examine
whether the performance change (P) could be predicted jointly by
the bandwidth change (B) and the connectivity change (C) in the
following linear equation:

P ¼ k0 þ kbBþ kcC:

The interaction between B and Cwas not included in the regression
model to avoid the multicollinearity problem (B × C and C were signif-
icantly correlated). Note also that there was no significant correlation
between B and C (Figs. 8E and F). This model provided a good
fit for the inter-individual performance change (Post1: R2 = 0.51,
F(2, 16) = 7.2, p b 0.01; Post2: R2 = 0.57, F(2, 16) = 9.4, p b 0.01).
The standardized regression coefficients for B and C were significant at
both Post1 and Post2 (Post1: kb = 0.50, kc = 0.53, both p b 0.05;
Post2: kb = 0.67, kc = 0.74, both p b 0.01). These results demonstrated
that the performance change could be well predicted by a linear
combination of the bandwidth change and the connectivity change.

Discussion

Our study provides the following psychophysical and neuroimaging
findings. (1) Motion direction discrimination training improved behav-
ioral performance, which was specific to the trained direction and
persisted for at least two weeks. This finding replicated the work by
Ball and Sekuler (1987). (2) Immediately after training, the mean
BOLD signal in V3A responding to the trained direction decreased,
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but this decrease mostly vanished two weeks later. (3) The decoding
accuracy and neural selectivity for the trained direction in V3A
increased immediately after training and persisted for at least two
weeks. (4) The forward connectivity from V3A to IPS also increased
immediately after training and persisted for at least two weeks.
(5) The behavioral learning effects could be well explained by a linear
combination of the selectivity and connectivity increases. These findings
shed light on the long-term neural mechanisms of motion perceptual
learning as discussed below.

In this study, we did not use a control group of subjects with
“dummy intervention” to demonstrate that the effects we have
found are learning specific. Please note, however, that the specificity
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investigated here is in regard to specificity of learning with respect
to motion directions. That is to say, in the perceptual learning
literature, specificity usually refers to specificity of learning to a
stimulus attribute, which in our case is motion direction. We consid-
ered learning-related changes with the trained direction, after
subtracting learning-related changes (if any) with the untrained
directions. In this sense, those untrained directions served as
controls. In other words, we used within-subjects controls, rather
than between-subjects controls.

It has been extensively investigated whether perceptual learning
couldmodulate themean neural activity in a cortical area. After subjects
were trained with a visual detection task, the mean neural activity
usually increased (Furmanski et al., 2004; Bao et al., 2010; Hua et al.,
2010; Goldhacker et al., 2014), which can be explained by the increased
number or improved sensitivity of relevant neural detectors. For studies
in which subjects practiced a near-threshold discrimination task, the
findings so far are mixed — the mean neural activity was found to
increase (Schwartz et al., 2002), decrease (Schiltz et al., 1999; Mukai
et al., 2007), or have little change (Op de Beeck et al., 2006; Jehee
et al., 2012). We found a mean signal decrease in V3A immediately
after the motion direction discrimination training. The interpretation
of these learning-related decreases has been that they reflect improved
efficiency of processing, manifested as a shift in neural firing from a
large population of neurons to a smaller, more specialized subset
(Mukai et al., 2007). However, two recent studies on the long-term
neural mechanisms of perceptual learning (Yotsumoto et al., 2008; Bi
et al., 2014) challenge the view that changes in themean neural activity
are directly related to perceptual learning. Although both studies found
an increase in the mean BOLD signal immediately after training, two
weeks or one month later, the increase either faded out or did not
correlate with the persistent behavioral learning effect. Consistent
with these two studies, the absence of the BOLD signal decrease two
weeks after training in our study suggests that changes in the mean
neural activity to trained stimuli might not be the critical mechanism
of perceptual learning.

In contrast to the transient decrease of the mean neural activity
in V3A, V3A exhibited a persistent increase in decoding accuracy,
suggesting that the long-term neuralmechanism of perceptual learning
is to make the neural representation of trained stimuli more stable and
precise, even in the absence of a change in themeanneural activity. This
idea is consistent with other perceptual learning studies on form
discrimination (Zhang et al., 2010a), orientation discrimination (Jehee
et al., 2012), and motion detection (Shibata et al., 2012). However,
it should be noted that these studies only measured the neural changes
immediately after training, but not longer-term changes. A more recent
study by Bi et al. (2014) identified the long-term neural mechanisms of
face discrimination learning as the stability improvement of spatial
activity pattern (i.e., higher correlation across multiple measures
after training) in left fusiform cortex. This stability improvement finding
is in line with our finding here. The improved decoding accuracy in
V3A may reflect the sharpening of direction-tuned responses at the
population level, as suggested by neurophysiological and modeling
works (Schoups et al., 2001; Bejjanki et al., 2011). This is exactly what
we found with the forward modeling analysis.

We demonstrated that motion direction discrimination training
could refine the neural representation of the trained direction in V3A,
but not in MT+. Shibata et al. (2012) also found that motion detection
training only affected V3A. These findings seem to contradict the
long-standing belief thatMT+ is the neural substrate ofmotion percep-
tual learning as demonstrated by earlier studies (Zohary et al., 1994;
Vaina et al., 1998). Note that, in the earlier studies, human or monkey
subjects were trained with only hundreds of trials (as compared to
9600 trials in our study) and the learning effects were short-term.
There have been studies suggesting that neural changes in MT are
not necessary for motion perceptual learning. Law and Gold (2008)
found that motion perceptual learning did not induce changes
in motion-driven responses of neurons in monkey MT (see also
Thompson et al., 2013). In a psychophysical study, Lu et al. (2004)
found that motion direction discrimination learning was possible with
the ‘paired-dots’ motion stimulus that was designed to suppress MT
activity (Qian and Andersen, 1994). Although the importance of V3A
in motion processing has been well recognized (Tootell et al., 1997;
Orban et al., 2003; Bartels et al., 2008; Wall and Smith, 2008), the
functional difference between V3A and MT+ is still not clear.
Vaina and colleagues (Vaina et al., 2003; Vaina et al., 2005) provided
neuropsychological evidence that V3A and MT+ are dominant in local
and global motion processing, respectively. In our study, since all dots
in the stimuli moved in one direction (100% coherence), subjects'
behavioral learning effect relied on the improvement of their local
motion processing ability, which might be reflected as the decoding
accuracy improvement in V3A. This hypothesis can be further tested
in future research. For example, when subjects are trained with the
same task as here, but using noisymotion stimuli, they need to integrate
local motion directions to acquire the global direction. In such a case,
would MT+ be affected by training?

In addition to the refined neural representation of the trained direc-
tion at the sensory area V3A, we also found that VPL could enhance the
forward connection from V3A to IPS. To the best of our knowledge, this
finding provided the first empirical evidence for the VPL reweighting
models (Poggio et al., 1992; Dosher and Lu, 1998; Bejjanki et al.,
2011). The reweighting models hypothesize that visual training
improves perceptual sensitivity by selectively strengthening the con-
nections from themost sensitive neurons in sensory area(s) to decision
units. Although themodels are theoretically appealing, they have never
been empirically evaluated with connectivity analyses. In our study,
V3A became more sensitive to the trained direction after learning.
To form an optimal decision or to better read out sensory information,
the decision units in IPS need to increase the pooling weight for the
output of V3A neurons selective for the trained direction. The weight
increase might be reflected as an increase in the forward connectivity
from V3A to IPS specific to the trained direction.

It is notable that the representation of the trained direction in IPS,
as quantified by the LMIs, did not change after training, which seems
to contradict the finding by Law and Gold (2008). Though many differ-
ences in stimuli, experimental procedures, and subject species may ex-
plain the discrepancy, our view is that, if IPS is simply a decision-making
area, its representation of motion direction does not have to be changed
by perceptual learning. As suggested by the reweightingmodels, IPS just
gives different weights to differentmotion channels for making a better
decision after training. It seems unnecessary for training to modify the
decision-making process implemented in IPS per se.

In the DCM analysis, we also measured the effective connectivity
between MT+ and IPS, but failed to find any change after training.
This finding demonstrated that the increased forward connectivity
was not a general phenomenon taking place between low- and high-
level cortical areas. It suggests that the connectivity increase is specific
to the functional pathway starting from a cortical area (e.g., V3A) that
could provide a better representation of the trained stimulus after
learning. In MT+, we did not find that motion direction discrimination
training altered the neural representation of the trained direction.
According to the reweighting model theories, it is not necessary to
change the pooling weight or the connectivity strength for the outputs
from MT+.

Recently, Beste et al. (2011) discovered a new kind of exposure-
based visual learning. They adapted a LTP (long-term potentiation)-
like protocol to visual stimulation to alter human visual behavior.
Subjects were exposed to passive visual high-frequency stimulation,
which induced a long-lasting sensitivity improvementwith the exposed
stimulus. This finding, aswell as other kinds of exposure-based learning
(Beste and Dinse, 2013), demonstrated that, unlike our findings here,
intensive training may not be necessary for skill learning. However,
researchers still know little about the underlying mechanisms of
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exposure-based learning. It is worthwhile to explore them for fully
understanding the brain plasticity.

Taken together, our results suggest that the neural plasticity
mediating perceptual learning occurs not only at the sensory
processing stage, but also at the stage of perceptual readout by
decision networks. These results help to reconcile discrepancies in
the earlier literature on VPL.
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