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Chronic administration of clozapine alleviates
reversal-learning impairment in isolation-reared rats
Nanxin Lia, Xihong Wua and Liang Lia,b

Isolation rearing has been used for inducing

schizophrenia-like symptoms in rats. Human

schizophrenics have deficits in prefrontal-dysfunction-

related cognitive/behavioral flexibility. Rats with lesions of

the medial prefrontal cortex perform poorly in reversal

learning. It is uncertain whether isolation rearing, however,

causes reversal-learning impairment in adult rats. Using

the rotating T maze, this study examined the effect of

chronic administration of clozapine on visual discrimination

learning and reversal learning in isolation-reared and

socially reared adult rats. The results show that isolation-

reared rats without clozapine injection performed

significantly worse than socially reared rats in reversal

learning but not in acquisition learning. Chronic injection

of clozapine (5 or 10 mg/kg) in isolation-reared rats

significantly improved reversal learning but had no effects

on acquisition learning. Further data analyses show that in

both the inhibition phase and the new-strategy-acquisition

phase of reversal learning, isolation-reared rats needed

significantly more correct-response trials to reach the

criterion than socially reared rats, and clozapine

significantly reduced the isolation-induced impairment

of reversal learning only in the new-strategy-acquisition

phase. In socially reared rats, clozapine had a dose-related

interfering effect on reversal learning but not acquisition

learning. This study supports the use of isolation rearing

as a model for investigating the neurodevelopmental

hypothesis of schizophrenia. Behavioural Pharmacology
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Introduction
Increasing evidence has shown that schizophrenia is

associated with certain disturbances that occur during

individuals’ early development (O’Connor and Rutter,

1996; Weinberger, 1996; Ellenbroek and Cools, 1998;

Marenco and Weinberger, 2000; McGrath et al., 2003;

Tochigi et al., 2004; Bembenek, 2005; Flagstad et al., 2005;

Rehn and Rees, 2005). The prefrontal cortex, which is

typically implicated in schizophrenia, reaches its anato-

mical and functional maturity only in early adulthood. On

the basis of the postulation by Weinberger (1987), if early

neurological injuries in the prefrontal cortex occur before

prefrontal maturity, the effects of the injuries may remain

silent until the prefrontal cortex matures. This neuro-

developmental hypothesis of schizophrenia emphasizes

that certain early-life environmental factors can have

substantial influences upon processes of brain matura-

tion. No single ‘ideal’ animal model can be expected to

represent abnormalities in all human schizophrenia-

relevant behaviors. With the advent of more new models,

a single model, however, is likely to represent a sub-

population of schizophrenia or even a particular aspect or

endophenotype of schizophrenia (Powell and Miyakawa,

2006). Thus, establishment of appropriate neurodevelop-

mental models in laboratory animals is critical for

investigating the mechanisms underlying schizophrenia-

related symptoms induced by early disturbances

(Heidbreder et al., 2000; Weiss and Feldon, 2001; Powell

et al., 2002, 2003; van den Buuse et al., 2003; Powell

and Miyakawa, 2006; Sullivan et al., 2006). In rats, following

isolation rearing, both substantial changes in central

neurotransmission (Jones et al., 1991, 1992; Whitaker-

Azmitia et al., 2000; Heidbreder et al., 2001; Dalley et al.,
2002; Muchimapura et al., 2003; Barr et al., 2004; Harte

et al., 2004; Preece et al., 2004; Meyera et al., 2005) and

remarkable behavioral abnormalities (Jones et al., 1991;

Geyer et al., 1993; Wilkinson et al., 1994; Reboucas and

Schimdek, 1997; Paulus et al., 1998; Varty and Geyer,

1998; Lapiz et al., 2000; Varty et al., 2000; Schrijver and

Wurbel, 2001; Weiss et al., 2001; Arakawa, 2005) can be

observed.

Schizophrenia patients usually suffer from cognitive/

behavioral perseveration (failure to switch from pre-

viously learned solution to a new solution), which is

routinely estimated by the Wisconsin Card Sorting Test

(WCST) (e.g. Milner, 1963; Kolb and Whishaw, 1983;

Lanser et al., 2002; Ritter et al., 2004; Tanaka et al., 2006),

reversal learning, prompted discourse, and the generation

of guessing sequences (for a review see Crider, 1997). For

example, in the WCST, which is typically used to examine

the prefrontal dysfunction (Janowsky et al., 1989; Rogers
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et al., 2000; Demakis, 2003; Nagahama et al., 2005),

patients with schizophrenia continue to sort cards

according to the same rule despite negative feedback.

Bender et al. (2006) have recently reported that after

4–26 weeks of chronic clozapine (an atypical antipsycho-

tic) treatment, performances in the WCST (measured by

correct hits, perseverative errors, and total errors)

improved significantly in the 54 patients with schizo-

phrenia who were tested.

In animals, reversal learning, which requires animals to

both inhibit the previously reinforced behavioral strategy

and acquire the previously declined behavioral strategy, is

often used for testing cognitive/behavioral flexibility

(Sperling, 1965; Mackintosh and Holgate, 1969; Jones et
al., 1991; Hartmann and Gunturkun, 1998; Li and Shao,

1998; Abdul-Monim et al., 2003, 2006; Russig et al., 2003;

van der Meulen et al., 2003; Clarke et al., 2004, 2005; Idris et
al., 2005). In rats, successful reversal-learning performance

largely depends on the ventral medial prefrontal cortex

(mPFC) and the orbital prefrontal cortex (oPFC). Damage

to the infralimbic area or the prelimbic area of rats’ ventral

mPFC (which is possibly homologous to the dorsolateral

prefrontal cortex in primates) impairs reversal learning

(spatial or nonspatial) but not acquisition learning (Li and

Shao, 1998; Chudasama and Robbins, 2003; Salazara et al.,
2004). Damage to the oPFC also impairs reversal learning

but not acquisition learning (Schoenbaum et al., 2002;

Chudasama and Robbins, 2003; McAlonan and Brown,

2003). Although mPFC-lesion rats and oPFC-lesion rats

commit more errors in reversal than controls, oPFC-lesion

rats commit more errors in suppressing the previously

rewarded stimulus–reward association and mPFC-lesion

rats commit more errors in learning the new stimulus–

reward association (Chudasama and Robbins, 2003).

Injection of phencyclidine (PCP), D-amphetamine, or

MK801, which affects prefrontal functions, or depletion of

serotonin in the mPFC, significantly impairs rats’ reversal-

learning performance (Jentsch and Taylor, 2001; Abdul-

Monim et al., 2003, 2006; van der Meulen et al., 2003; Idris

et al., 2005; Robbins, 2005). PCP-induced impairment of

reversal learning can be significantly attenuated by

injection of atypical antipsychotics, such as clozapine,

ziprasidone, or olanzapine (Abdul-Monim et al., 2003, 2006;

Idris et al., 2005).

In the study by Joel et al. (1997), one task consisted of

both a delayed nonmatch-to-sample training and a

reversal from the nonmatch-to-sample training to the

match-to-sample training. The results show that rats with

mPFC lesions did not exhibit working memory impair-

ment but were slower in reversal from the nonmatch-to-

sample performance to the match-to-sample perfor-

mance. Joel et al. (1997) suggested that the performance

impairments in mPFC-lesion rats are due to a difficulty in

changing behavioral strategy, therefore the reversal

component of the task is an analog of the WCST.

It has not been clear, however, whether isolation rearing

impairs, has no effect on, or even facilitates reversal

learning in adult rats (Krech et al., 1962; Jones et al., 1991;

Wongwitdecha and Marsden, 1996; Schrijver and Würbel,

2001; Abdul-Monim et al., 2003; Schrijver et al., 2004). For

example, some studies reported that isolation rearing

impaired reversal learning but did not affect the original

learning of visual discrimination (Krech et al., 1962; Jones

et al., 1991; Schrijver et al., 2004). In the studies by

Schrijver and Würbel (2001) and Abdul-Monim et al.
(2003), however, neither acquisition learning nor reversal

learning was affected by isolation rearing. Moreover, in

the study by Wongwitdecha and Marsden (1996), both

acquisition learning and reversal learning in a Morris

water maze were improved in isolation-reared rats

compared with socially reared controls. Thus, it is very

necessary to carefully reevaluate the effects of isolation

rearing on reversal learning using more precisely con-

trolled testing paradigms. As in rats isolation rearing alters

dopamine activity in the mPFC (Jones et al., 1991, 1992)

and lesions of the mPFC during either the neonatal age or

the adulthood impair reversal learning (Li and Shao,

1998; Chudasama and Robbins, 2003; Salazara et al., 2004;

Schwabe et al., 2004), this study used a behavioral

procedure that can efficiently reveal the impairing effect

of local lesions of the subregions of the ventral mPFC on

reversal learning (Li and Shao, 1998).

As an efficient atypical antipsychotic drug, clozapine has

been widely used to alleviate both schizophrenics’

cognitive symptoms (Meltzer, 1989; Deutch et al., 1991;

Mcelroy et al., 1991; Pickar et al., 1992; Robertson and

Fibiger, 1992; Meltzer and McGurk, 1999; Sharma et al.,
2003; Galletly et al., 2005) and rats’ schizophrenia-like

behavioral impairments (Swerdlow and Geyer, 1993; Varty

and Higgins, 1995; Hitchcock et al., 1997; Cilia et al., 2001,

2005; Bardgett et al., 2006; Levin and Christopher, 2006;

Ortega-Alvaro et al., 2006). The affinities of clozapine at

various receptors play an important role in ameliorating

schizophrenia-related neurochemical abnormalities and

cognitive/behavioral deficiencies (Sebban et al., 2002;

Robbins, 2005). It is not clear, however, whether

isolation-rearing-induced impairments of reversal

learning (Krech et al., 1962; Jones et al., 1991; Schrijver

et al., 2004) can be ameliorated following treatment with

clozapine. According to the study by Abdul-Monim et al.
(2003), PCP impaired reversal learning in both isola-

tion-reared and socially reared rats, but the atypical

antipsychotic ziprasidone (2.5 mg/kg, intraperitoneal

route) significantly reversed the PCP-induced impair-

ment only in socially reared rats but not in isolation-

reared rats.

The aim of this study was to examine the effects of

chronic administration of clozapine on original visual

discrimination learning (acquisition learning) and reversal

learning in adult rats with or without isolation-rearing
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experience. Both acquisition learning and reversal learn-

ing were tested in a rotating T maze (Li and Shao, 1998).

Methods

Participants

Forty-eight male Sprague-Dawley rats aged 21 days (the

age of weaning) were purchased from the Beijing Vital

River Experimental Animals Technology Ltd. (Beijing,

China). They were randomly assigned into two main

groups: the isolation-reared group (24 rats) and the

socially reared group (24 rats). Each of the two main

groups was further divided randomly into three subgroups

injected with different doses of clozapine (see below).

For isolation-reared rats, each individual was housed in a

single transparent plastic cage (48� 30� 18 cm). For

socially reared rats, three individuals were housed in a

cage. As both isolated and socially reared rats were kept in

the same room, isolated rats were able to hear, smell and

see other rats. All rats had free access to food (Beijing

Vital River Experimental Animals Technology Ltd.,

Beijing, China) and water. They were maintained under

the condition of a constant temperature of 241C ( ± 21C),

humidity of 40–50%, and a 12 h light/dark cycle (lights on

07.00 h). Six weeks after weaning (2 weeks before

testing), rats were gradually food deprived to approxi-

mately 85% the free-feeding body weight. The reduced

body weight was kept by restricting the amount of food,

and it reached the range between 240 and 260 g at the

time of testing.

All efforts were made to minimize animal suffering and to

use only the number of animals necessary to produce

reliable scientific data. The experiments were carried out

according to the guidelines of the Beijing Laboratory

Animal Center, the guidelines of the Canadian Council of

Animal Care, and the Policies on the Use of Animals and

Humans in Neuroscience Research revised and approved

by the Society for Neuroscience in January 1995.

Rotating T maze

Figure 1 shows the diagram of the rotating T maze used

in this study. The rotating T maze has also been

described in detail elsewhere (Li and Shao, 1998).

Briefly, the maze had three hexagonal boxes and one T

tunnel. The maze floor was made of stainless-steel wire

meshes. Uncolored transparent Plexiglas lids were on the

three hexagonal boxes and the T tunnel. The three

hexagonal boxes were made of dark Plexiglas and were

referred to as box A, box B, and box C, respectively. The

edge length of each hexagonal box was 9.0 cm. Each box

had a door that could be opened to the T tunnel.

The T tunnel was also made of dark Plexiglas. The length

of each arm was 13.5 cm at its longest edge. The stem had

the width of 7.3 cm and the length of 22.0 cm. As the T

tunnel could be rotated around its axis (whose position is

shown as an asterisk in Fig. 1), the entrance to the T-

tunnel stem or either of the two exits from the T-tunnel

arms could connect to any hexagonal box of the three. On

the frontal wall (25.5 cm in length) of the T tunnel, there

were two holes (1 cm in diameter, 8.5 cm apart from each

other). A light emitting diode (LED) was installed inside

each of the holes, providing visual cues for food reward.

Visual discrimination learning and reversal learning

In the eighth week after weaning (8 weeks of social

isolation for isolation-reared rats), all rats started their

training in a dark room in which the only light source was

the LED(s) in the T maze. All tests were conducted

during the light phase.

During the first 3 days of training, each rat was put into

the maze for 30 s in a single day, when all the doors in the

maze were open, the two LEDs were on, and food pellets

were placed in each of the three boxes.

On the fourth day, rats were trained to respond for food

by learning the correct strategies. In each trial, the light

stimulus was presented only on one side of the two arms

of the T tunnel. For half of the rats, the box on the light

side was the target box that was baited, and for the other

half of rats, the box on the side without light was the

target box. After the door of the start box was opened, the

rat stepped out of the box and the door of the box was

Fig. 1

∗

A B

C

Overhead schematic view of the rotating T maze used for visual
discrimination tests. The maze has (1) three hexagonal boxes (box A,
box B, and box C), and (2) a T tunnel. In this figure, box C represents
the start box, and the entrance of the T tunnel is connected to box C.
A light spot is on the right side of the front wall of the T tunnel. The
position of the axis of the T tunnel is indicated by the asterisk.
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then closed to prevent the rat from turning back. If the

rat stepped into the target box (a ‘correct response’), it

was rewarded with a food pellet (50 mg, Beijing Vital

River Experimental Animals Technology Ltd., Beijing,

China). If the rat entered the box opposite to the target

box (an ‘error response’), it received no food. The door of

the terminal box containing the rat was then closed, and

the T tunnel was rotated with the entrance connecting to

this box, which then became the start box in the next

trial. Thirty seconds later, a new trial started. Thus, a

noncorrection-trial testing procedure was used.

A total of 12 trials were carried out per day for each rat.

This discrimination training lasted approximately 2 weeks

until rats reached the acquisition-learning criterion, that

is over 11 correct trials out of 12 trials for two consecutive

days.

When a rat reached the criterion of acquisition learning, it

entered the stage of reversal learning on the next day. In

reversal learning, the procedure and the criterion

remained the same as those in acquisition learning,

except for that the stimulus–reward contingency was

reversed, that is previous ‘light–food’ (‘dark–no food’)

association became ‘dark–food’ (‘light–no food’) associa-

tion, or vice versa.

According to the previous studies (e.g. Mackintosh and

Holgate, 1969; Jones et al., 1991; Ragozzino et al., 2002;

Chudasama and Robbins, 2003), to reach the criterion of

reversal learning, rats must first inhibit the previously

rewarded strategy and then acquire the new strategy.

In this study, it was defined that if a rat reached more

than six correct trials (over 50% correct) on each of

three successive days, the previously learned behavioral

strategies (obtained during acquisition learning) was

inhibited. Thus, the rat’s performance in reversal learn-

ing was divided into two phases: (i) the inhibition phase

and (ii) the new-strategy-acquisition phase.

Clozapine administration

Clozapine (Sigma-Aldrich Corporate, St Louis, USA) was

dissolved in acetic acid saline solution, whose pH was

adjusted to neutral with 10 mol/l NaOH. Chronic

administration of clozapine was applied during the whole

course of testing for each rat (6–8 weeks, depending on

performance). On the basis of the clozapine doses used in

previous studies (e.g. Swerdlow and Geyer, 1993;

Idris et al., 2005; Abdul-Monim et al., 2006), in this

study the dose for an individual rat was 0, 5 or 10 mg/kg

(with the constant injection volume of 0.1 ml). Thus,

isolation-reared rats and socially reared rats were

further grouped according to the dose of clozapine. For

a rat, the injection was administered once a day via the

intraperitoneal route 30 min before putting the rat into

the maze.

Statistics

A complete 2 (rearing type: socially rearing, isolation

rearing) by 2 (visual cue pattern across acquisition

learning and reversal learning: light/dark, dark/light) by

3 (clozapine dose: 0, 5, 10 mg/kg) between-groups design

was used in this study. Group mean differences were

tested using three-way analyses of variance (ANOVAs).

The analyses were performed using SPSS 11.5 software

(Chicago, Illinois, USA). Significant level was set at 0.05.

As Scheffé’s test is used to make unplanned comparisons

among the means and is one of the most stringent post-

hoc tests, in this study Scheffé’s test was used for further

localizing the sources of significant mean differences.

Results

Original visual discrimination learning (acquisition

learning)

All the rats used in this study reached the criterion of

visual discrimination learning, even though there were

fluctuations of the total number of testing sessions to the

criterion across individual rats. Figure 2 shows the

numbers of correct responses to the criterion (panel a)

and the numbers of errors to the criterion (panel b).

For both the number of correct-response trials and the

number of error-response trials to the criterion, ANOVAs

showed that none of the main effects or interactions

among the three factors was significant (P > 0.05).

Reversal learning

All the rats eventually reached the criterion of reversal

learning, even though there was great variation in the

number of testing sessions across individual rats. Figure 3

shows the numbers of correct-response trials to reach the

criterion (panel a) and the numbers of error-response

trials to reach the criterion (panel b). Obviously, rats

needed more trials to reach the performance criterion in

reversal learning than in previous acquisition learning. In

addition, isolation-reared rats treated with saline injection

needed more trials to reach the learning criterion than

any other subgroups.

For the number of correct-response trials to the criterion,

the interaction between rearing type and clozapine dose

was significant, [F(2,36) = 89.72, P < 0.001], as were the

main effect of rearing type [F(1,36) = 78.46, P < 0.01],

and the main effect of clozapine dose [F(2,36) = 46.62,

P < 0.001]. Thus, both rearing type and clozapine dose

affected reversal learning.

The main effect of visual cue and all of the interactions

involving this factor were nonsignificant (P > 0.05).

Therefore, further statistical analyses were focused only

on the factors of rearing type and clozapine dose and their

interactions. Thus, data based on the two visual cue

patterns were combined for each subgroup of rats.
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As the interaction between rearing type and clozapine

dose was significant, further separate one-way ANOVAs

were performed. These showed that there was a

significant difference between isolation-reared rats and

socially reared rats injected with saline [F(1,14) = 246.73,

P < 0.001], indicating that isolation-reared rats without

clozapine injection needed significantly more correct

trials than their socially reared control group to reach

the criterion. Surprisingly, isolation-reared rats injected

with clozapine at a dose of 5 mg/kg needed significantly

fewer correct trials to reach the learning criterion than

socially reared rats injected with clozapine (5 mg/kg)

[F(1,14) = 12.08, P < 0.001]. The difference between

isolation-reared rats and socially reared rats injected with

clozapine at a dose of 10 mg/kg, however, was not

significant, P > 0.05.

Separate ANOVAs also showed that for isolation-reared

rats, there was a significant effect of clozapine dose

[F(2,21) = 123.14, P < 0.001]. Scheffé’s post-hoc tests

showed that all the three groups were significantly

different from each other. The dose of 5 mg/kg produced

a greater impairment-reducing effect than the dose of

10 mg/kg in isolation-reared rats (Fig. 3, panel a).

Interestingly, for socially reared rats, there was also a

significant effect of clozapine dose, F(2,21) = 8.71,

P < 0.01. Scheffé’s post-hoc tests showed that only the

0 mg/kg group and the 10 mg/kg group were significantly

different. The 10 mg/kg group needed the highest

number of correct-response trials to the criterion among

the three socially reared groups (Fig. 3, panel a).

For the numbers of error-response trials to the criterion, a

three-way between-group ANOVA showed that there

were no significant main effects or interactions

(P > 0.05).

Inhibition of previous strategies in reversal learning

As errors committed during reversal learning did not

differ significantly between subgroups, only the numbers

of correct responses were analyzed for each of these two

phases. In addition, the effect of visual cue pattern was

not analyzed.

For the number of correct-response trials to reach the

inhibition criterion (Fig. 4, panel a), a 2 (rearing type) by

3 (clozapine dose) two-way between-group ANOVA

showed that neither the interaction between the two

factors nor the main effect of clozapine dose was sig-

nificant (P > 0.05). The main effect of rearing type was

significant, however [F(1,42) = 7.79, P < 0.05] indicating

that isolation-reared rats needed significantly more

correct trials to inhibit the previously rewarded strategy

than socially reared rats. Interestingly, although clozapine

injection had no significant effect in this phase, it

appeared to make performance of socially reared rats

slightly worse.

Acquisition of the new strategy in reversal learning

For the performance in the new-strategy-acquisition

phase of reversal learning, isolation-reared rats without

receiving clozapine injection needed more correct-

response trials to reach the learning criterion than both

Fig. 2
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isolation-reared rats receiving clozapine injection and

socially-reared rats (Fig. 4, panel b). A 2 (rearing type) by

3 (clozapine dose) ANOVA showed that the interaction

between the two factors was significant [F(2,42) = 83.85,

P < 0.001] as were the main effect of rearing type

[F(1,42) = 56.34, P < 0.001] and the main effect of

clozapine dose [F(2,42) = 42.96, P < 0.001].

For isolation-reared rats, Scheffé’s post-hoc tests showed

that all the three subgroups were significantly different

from each other, showing the clozapine dose effect. For

socially reared rats, Scheffé post-hoc tests showed that

only the 0 mg/kg subgroup and the 10 mg/kg subgroup

were significantly different. The 10 mg/kg group needed

highest number of correct-response trials to reach the

reversal-learning criterion among the three socially reared

subgroups.

Fig. 3
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Discussion
As mentioned in Introduction, previous studies have not

reached an agreement about the effect of isolation rearing

on reversal learning (Krech et al., 1962; Jones et al., 1991;

Wongwitdecha and Marsden, 1996; Schrijver and Würbel,

2001; Abdul-Monim et al., 2003; Schrijver et al., 2004),

implying that the effect of isolation rearing on reversal

learning largely depends on the nature of the test. Here,

some important features of the rotating T maze used in

this study should be emphasized because these features

are critically associated with the efficiency of the testing

paradigm for revealing the impairing effect of isolation

rearing on reversal learning.

First, as mentioned in Methods, the LED cue was the

only light source in the testing room during a testing

session. In such an environment, rats were able to

concentrate only on the visual cue indicating the ‘correct’

target box, without receiving irrelevant visual disruptions.

In addition, as tests were carried out in the rotating maze,

there were no interactions, such as physical contacts,

between tested rats and experimenters during a testing

session. Moreover, in a testing session, because each

hexagonal box was used as the start box, correct target

box, and wrong target box, no preference for a specific box

(location) was reinforced. Finally, because the rotating T

tunnel had three different positions relative to an

individual hexagonal box, no specific maze-pathway

preference was reinforced. Therefore, using the rotating

T maze, any possible disruptive effects of redundant cues

that occur in some other testing apparatus, such as those

in Skinner box, Morris water maze, and traditional T

(or Y) maze, were substantially reduced.

The results of this study show that although neither

isolation rearing nor clozapine injection had significant

effects on acquisition of the simple visual discrimination,

isolation-reared rats, if they were not injected with

clozapine, needed significantly more correct-response

trials than socially reared rats to reach the performance

criterion in reversal learning. These findings support the

previous reports by Krech et al. (1962), Jones et al. (1991),

and Schrijver et al. (2004), indicating the impairing effect

of isolation rearing on reversal learning.

In this study, however, when the rat’s discrimination

behavior in the maze was measured with the total number

of error-response trials, the effect of isolation rearing on

reversal learning was not significant. Thus, the measure-

ment of maze-performance using the total number of

correct-response trials is more sensitive to reversal-

learning deficits than measurement with the total

number of error-response trials. It should be noted that

the sensitivity of maze-performance measurement using

the number of error-response trials is also influenced by

the strictness of the learning criterion. When the learning

criterion was stringent (as the criterion used in this

study), large numbers of sessions were needed to reach

the criterion across individual rats, and relative differ-

ences in the total numbers of error-response trials across

rats were reduced.

To perform effectively in a reversal-learning task, animals

must first suppress previously acquired behavioral strate-

gies and then establish new strategies (Mackintosh and

Holgate, 1969; Jones et al., 1991; Ragozzino et al., 2002;

Chudasama and Robbins, 2003). The results of this study

indicate that isolation-reared rats showed a small but

significant impairment in the initial phase (inhibition

phase) of reversal learning, characterized by the need of

more correct-response trials to inhibit the previously

reinforced behavioral strategy. Chronic administration of

clozapine, however, did not alter the isolation-rearing-

induced impairment in the inhibition phase of reversal

learning. In the new-strategy-acquisition phase of reversal

learning, isolation-reared rats without clozapine injection

needed significantly more correct-response trials to reach

the learning criterion than both isolation-reared rats with

clozapine injection and socially reared rats. Thus,

isolation rearing leads to impairment of reversal learning

in both the inhibition phase and the new-strategy-

acquisition phase of reversal learning, but clozapine

reduced the impairment only in the new-strategy-

acquisition phase.

Selective lesions of the prelimbic area or the infralimbic

area of the mPFC lead to similar impairment of reversal

learning in rats tested in the same T maze (Li and Shao,

1998). Moreover, in the study by Chudasama and Robbins

(2003), selective lesions of the infralimbic area of the

mPFC specifically impaired rats’ performance in the new-

strategy-acquisition phase of reversal learning, suggesting

that the infralimbic area of the mPFC is more involved in

learning the previously unrewarded stimulus–reward

association. Selective lesions of the oPFC specifically

impaired rats’ performance in the inhibition phase of

reversal learning, suggesting that the oPFC is more

involved in suppressing the previously rewarded stimu-

lus–reward association. The reversal learning deficits

observed in this study might be associated with dysfunc-

tions in both the mPFC and the oPFC. Particularly, the

results showing clozapine reduced reversal-learning

deficits only in the new-strategy-acquisition (late) phase

suggest that certain isolation-rearing-induced neurotrans-

mission changes, which were responsible for the beha-

vioral impairment in the late phase of reversal learning,

were associated with the mPFC.

It has been well known that isolation rearing causes

various damages to the mPFC, including volume loss

(Day-Wilson et al., 2006), increase of acetylcholine and

serotonin fiber densities (Lehmann et al., 2003, 2004),
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reduction of 5-HT release (Crespi et al., 1992; Bickerdike

et al., 1993; Dalley et al., 2002), reduction of 5-HT level

(Miura et al., 2002), reduction of dopamine level (Jones

et al., 1991; Miura et al., 2002; Eells et al., 2006), increase

of 5-HT2A receptor binding-site densities and decrease of

5-HT1A receptor binding-site densities (Preece et al.,
2004), and abnormal responses to stimulation of the

ventral tegmental area (Peters and O’Donnell, 2005).

The affinities of clozapine at various receptors may play

an important role in alleviating isolation-rearing-induced

prefrontal abnormalities and the behavioral impairment

observed in the late phase of reversal learning.

Growing evidence has shown that the central serotonin

system plays a critical role in the syndrome of behavioral

and cognitive abnormalities observed in animals deprived

of social contact from an early age (e.g. Bickerdike et al.,
1993; Fone et al., 1996; Whitaker-Azmitia et al., 2000;

Dalley et al., 2002; Robbins, 2005). Clozapine has a high

affinity at both 5-HT1A and 5-HT2A receptors. 5-HT2A

receptors selectively regulate mesocortical dopamine

projections (Meltzer, 1989; Ichikawa et al., 2001; Borto-

lozzi et al., 2004; Pehek et al., 2006). Therefore, the ability

of clozapine to block 5-HT2A receptors in the mPFC may

lead to an increase in dopamine transmission and alleviate

some aspects of cognitive dysfunction associated with

dopamine deficits. A high 5-HT2A/dopamine D2 receptor

affinity ratio has been correlated with successful treat-

ment of negative symptoms of schizophrenia (Altar et al.,
1986).

In addition to neurotransmission in the mPFC, isolation

rearing also changes neurotransmission in other forebrain

structures, including the nucleus accumbens, striatum,

hippocampus, and amygdala (e.g. Jones et al., 1992;

Heidbreder et al., 2001; Dalley et al., 2002; Muchimapura

et al., 2003; Barr et al., 2004; Harte et al., 2004; Preece et al.,
2004; Meyera et al., 2005). The study by Jones et al.
(1991) showed that alterations in dopaminergic, seroto-

ninergic, and cholinergic markers occurred in brains of

isolation-reared rats. In addition, the study by Hall

et al. (2002) showed that isolation rearing decreased

the level of the N-methyl-D-aspartate-receptor subunit

(NMDAR1A) in the striatum and prefrontal cortex, but

increased the subunit level in the hippocampus.

Obviously, the alleviating effect of clozapine on isola-

tion-rearing-induced reversal-learning/neurotransmission

deficits is a critical research issue for understanding the

mechanisms underlying symptoms of schizophrenia

associated with disturbances occurring during individuals’

early development.

Isolation-reared adult rats also show significant prepulse-

inhibition (PPI) deficiency (Cilia et al., 2001, 2005; Geyer

et al., 2001; Swerdlow et al., 2001; Weiss and Feldon, 2001;

van den Buuse et al., 2005), which can be compensated by

either antipsychotic treatments or postweaning mani-

pulations (Cilia et al., 2001, 2005; Geyer et al., 2001;

Powell et al., 2002). PPI is the reduction of a startle reflex

when the intense startling stimulus is preceded by a

weaker stimulus and considered as a model of sensor-

imotor gating (for a review see Li and Yue, 2002). Some

studies have reported that PPI is impaired in patients

with schizophrenia (for reviews see Braff et al., 2001;

Geyer et al., 2001; Swerdlow et al., 2001; Weiss and Feldon,

2001; van den Buuse et al., 2005) and atypical anti-

psychotics, especially clozapine, can normalize PPI

deficits in these patients (Kumari et al., 1999, 2000,

2002; Leumann et al., 2002; Oranje et al., 2002). There-

fore, the common mechanisms underlying isolation-rear-

ing-induced sensorimotor gating impairment and

cognitive/behavioral flexibility impairment are also an

important topic for future studies.

In this study, for socially reared rats, the high dose of

clozapine (10 mg/kg) significantly interfered performance

in the new-strategy-acquisition phase but not in the

inhibition phase of reversal learning. These data suggest a

complex bidirectional effect of clozapine on the late

phase of reversal learning. The study by Heidbreder et al.
(2001) showed that in socially reared rats, clozapine (5,

10 mg/kg, subcutaneously) produced a significantly dose-

dependent increase in dopamine outflow in the mPFC.

Thus, the increased release of dopamine in the mPFC

might be able to cause certain disruptive influence to the

performance during the new-strategy-acquisition phase of

reversal learning in socially reared rats. Moreover,

whether there is a link between the modulating effect

of chronic administration of clozapine on neural responses

of the mPFC to glutamate excitatory inputs (Jardemark

et al., 2000) and the new-strategy-acquisition phase of

reversal learning is another important research issue in

the future.

In summary, the results of this study indicate that

isolation rearing leads to impairment of reversal learning,

but not of acquisition, of simple visual discrimination in

adult rats. In isolation-reared rats, the impairment that

occurs during the new-strategy-acquisition phase, but not

the inhibition phase, of reversal learning can be alleviated

by chronic administration of clozapine, even though

chronic administration of high-dose clozapine disrupts

reversal learning in the new-strategy-acquisition phase in

socially reared rats. Thus, this study has advanced the

animal model used for both studying the effect of

isolation rearing on cognitive/behavioral flexibility and

estimating the efficiency of new antipsychotics.
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